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Abstract

Question: Can very high-resolution colour orthophotography and digital

surface models (DSMs) from an unmanned aerial vehicle (UAV) be effectively

used for assessment of habitat extent and condition in fine-scale disturbance-

dependent mosaics?

Location: Serra de Argamountain range, a Natura 2000 protected site in the NW

region of Portugal where drastic changes in pastoral activities have occurred

over recent decades.

Methods: An UAV platform was used to collect very high-resolution (6 cm)

images and to produce a DSM (10 cm). From these data, several features were

extracted related to colour, band ratios, as well as texture features calculated

from colour imagery and surface elevation. Based on a systematic sampling

design, field data were collected for both training and validation of a supervised

classifier. Extracted features and ground truth training data were combined to

calibrate a pixel-based Random forest classifier, with the purpose of devising a

habitat map for the entire study area. Map validation was performed to assess

classification accuracy, and feature importancemetrics were calculated.

Results: Validation results revealed good mean overall accuracy (0.89), with

some performance decrease in situations of high interspersion of habitat types.

The priority habitat type 6230* (Nardus grasslands), defining the vegetation

matrix of the test site, obtained 0.96 and 0.91, considering, respectively,

producer and user accuracy. In turn, priority habitat type 4020* (Atlantic wet

heathlands) recorded 0.68 and 0.77. The obtained habitat map allowed mea-

surement of the extent, description of the spatial arrangement and provided an

indication of the conservation condition of target habitat types. Test results

regarding the discrimination ability of different features highlighted the impor-

tance of surface elevation textures derived from the DSM, followed by band

ratios textures and other more complex texture features calculated from colour

imagery.

Conclusions: Overall, the developed methodology showed promising results

for assessing the extent and condition of habitats of high conservation priority in

fine-scale, dynamic vegetation mosaics. Future advances in the use of UAV plat-

forms may play an important role in monitoring protected sites and fulfil legal

reporting obligations of EU member states, while reducing the costs associated

with intensive in-field assessments.
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Introduction

The continuous monitoring of species and habitats of high

conservation value across Natura 2000 protected areas is

an obligation established under the Habitats Directive

across the European Union (European Commission 1992).

It is also a requirement in order to tackle human-driven

land-use changes, which severely impact terrestrial

biodiversity and are expected to affect it considerably

throughout the next 100 yrs (Sala et al. 2000; Waldhardt

et al. 2004). A large part of these protected areas is located

in mountainous regions, including marginal Mediter-

ranean mountains currently affected by socio-economic

changes (Bolliger et al. 2007). These cultural landscapes,

frequently exhibiting high levels of biological diversity

(Bielsa et al. 2005; Brown et al. 2011), currently face shifts

in agricultural practices and human inputs, varying from

partial abandonment of some parcels, creating a landscape

mosaic of unused and cropped areas (Bielsa et al. 2005), to

total abandonment of agriculture (and pastoralism) and

progressive transformation into uncultivated land

(MacDonald et al. 2000). This usually leads to an increase

in the area occupied by semi-natural vegetation, such as

scrubland and woodland (Bielsa et al. 2005), and a gradual

colonization by non-crop species, initially with annual

herbaceous plants (mainly ruderal species), which are

gradually replaced by perennial herbs and low shrubs,

creating conditions for the development of taller woody

species that ultimately cause the loss of open habitats

(Plieninger 2006).

In such context, the Natura 2000 network represents

a key instrument to preserve the high nature value

occurring on small-scale and actively managed habitats

under threat due to abandonment of farming and graz-

ing activity. However, monitoring the extent and condi-

tion of disturbance-dependent habitat types is

particularly challenging as they often occur in fine-

grained, highly dynamic mosaics maintained through

extensive farming and/or moderate grazing pressure

(Halada et al. 2011). Monitoring strategies are even

more challenging under a scenario of widespread aban-

donment of husbandry in marginal rural areas, since

these habitats will have their occupancy area reduced

due to successional evolution towards scrub or wood-

land, especially in regions where the wild herbivore

fauna has been depleted by centuries of human land

management (Goodall & Perry 2009). In addition,

changes in fire regimes triggered by shrub encroachment

and fuel biomass accumulation are another threat to

these habitats (Burkinshaw & Bork 2009).

Currently, national and regional authorities liable to

provide assessment of the distribution and extent of

Annex I habitats are faced with urgent data needs yet

limited means to acquire data (Weiers et al. 2004; Van-

den Borre et al. 2011; Spanhove et al. 2012). As finan-

cial resources are limited, the monitoring approaches

need to be as cost-effective and consistent as possible.

As such, remote sensing techniques have emerged as a

powerful tool for habitat mapping and monitoring

(Weiers et al. 2004; Vanden Borre et al. 2011; Nagen-

dra et al. 2013; Corbane et al. 2015). The analysis of

high spatial resolution aerial photography is commonly

used for vegetation classification and species identifica-

tion (Gonz�alez-Orozco et al. 2010), however the resolu-

tion of these image sensors is usually insufficient to

provide accurate quantifications of small-scale and com-

plex habitats, thus it is essential to use more advanced

systems (Gross et al. 2009; Vanden Borre et al. 2011).

Recent advances in the use of very high-spatial resolu-

tion satellite imagery (e.g. RapidEye, QuickBird) have

proven highly useful for mapping Natura 2000 habitat

types, such as grasslands (Hernando et al. 2012; Sch-

midt et al. 2014; Buck et al. 2015) and heathlands

(F€orster et al. 2008). In addition, developments in

unmanned aerial vehicles (UAVs) for environmental

remote sensing purposes have provided the means for

achieving accuracies that meet or exceed traditional

aerial photo-interpretation techniques (Knoth et al.

2013; Husson et al. 2014). The low flight altitude rela-

tive to other aircraft and satellites, the reduced or

absence of cloud contamination, as well as their fine

resolution and flexible scheduling of flight missions

allows UAVs to provide visual imagery at a more

localized and biologically distinguishable level, thus

bridging the gap between ground-based observations

and lower resolution remotely sensed data (Laliberte &

Rango 2008; Getzin et al. 2012). Moreover, UAV plat-

forms allow information to be obtained in problematic

areas of accessibility, such as bogs, cliffs (Knoth et al.

2013), riverine or lake ecosystems (Husson et al.

2014).

Despite all the above advantages, major challenges still

exist in data processing, namely image classification proce-

dures (Huang et al. 2007) due to the large amount of data

stored during flight missions (Permuter et al. 2006). Auto-

mated or semi-automated classificationmethods are there-

fore crucial for UAV applications in ecology and other
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fields. In this respect, a plethora of classification methods

have been developed with Random Forest (hereafter RF;

Breiman (2001)), a powerful machine learning technique,

becoming increasingly popular in remote sensing applica-

tions (Pal 2005; Immitzer et al. 2012; Rodriguez-Galiano

et al. 2012). Several studies have shown that RF performs

better than other classification algorithms (Rodriguez-

Galiano & Chica-Rivas 2012; Rodriguez-Galiano et al.

2012; Zhang & Xie 2013), with strong ability to handle

high-dimensional data sets, making it attractive for

processing high spatial resolution data.

In this study, focused on disturbance-dependent habitat

mosaics in a Natura 2000 site, we tested an UAV-based

methodology for assessing complex, dynamic vegetation

mosaics composed of several EU habitat types of high con-

servation value, including two considered of high priority

(Atlantic wet heath and Nardus grasslands). We discuss the

classification performance and suitability of this approach

to support the assessment and monitoring of habitat types

with high conservation value, with a reduction in running

costs and operational complexity of image acquisition with

UAV technologies.

Methods

Study area and focal habitat mosaic

The study area is located in the Serra de Arga mountain

range (Fig. 1), a Natura 2000 site located in the northwest

region of Portugal (8°42039.662″ W, 41°49013.890″ N),

comprising a total area of 9.72 ha. Elevation ranges from

747 to 781 m a.s.l. and the climate is cool summer

Mediterranean type Csb according to the K€oppen-Geiger

classification system (Peel et al. 2007). Total annual

precipitation is 1510 mm and minimum, average and

maximum annual temperatures are, respectively: 6.1, 11.7

and 17.4 °C (Ninyerola et al. 2005).

This area is characterized by a mosaic, dominated by

two different types of vegetation, corresponding to two

priority habitat types listed in Annex I of the EU Habi-

tats Directive (see Fig. 2 and Appendix S1): Atlantic wet

heathlands (habitat 4020*) and Nardus grasslands (habi-

tat 6230*). Habitat type 4020* (Temperate Atlantic wet

heaths with Erica ciliaris and Erica tetralix) corresponds to

dense formations on wet acid soils, dominated by differ-

ent species of heather (E. ciliaris, E. tetralix, Calluna vul-

Fig. 1. Study area location in the Iberian Peninsula and the NW region of Portugal. The test site is fully included in the Natura 2000 Serra de Arga Site of

Community Importance.
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garis) and gorse (Ulex minor) and hygrophilous species of

Genista (G. anglica, G. micrantha). This habitat type may

include various densities of grass and occasional bare

soil, depending on local conditions and disturbances.

Habitat type 6230* (Species-rich Nardus grassland, on

siliceous substrates in mountain areas and sub-mountain

areas in continental Europe) is dominated by perennial

grasses and rushes (Nardus stricta, Danthonia decumbens,

Juncus squarrosus, Agrostis hesperica), usually accompanied

by several small-sized forbs (Serratula tinctoria subsp.

seoanei, Polygala serpyllifolia, Galium saxatile). Heath

shrubs may occur as scattered plants or small patches,

but the grassland component is typically dominant

except in degraded forms of the habitat. In this case,

shrubs and bare soil will become more abundant and

the typical vegetation structure and species assembly will

be depleted. In this southern limit of their distribution,

these two habitat types occur in dense, dynamic mosaics

on wet oligotrophic soils, usually on high plains and

near springs. Small ponds or streams, dry heath (habitat

4030) and areas of bare ground (soil or rock) are other,

less frequent components of the mosaic.

The composition and conservation value of the mosaic

depends on the disturbance regime, especially on grazing

pressure. Thus, low levels of grazing will favour wet heath,

which becomes the vegetation habitat type. Conversely,

high levels of grazing will favour Nardus grasslands, how-

ever intensive grazing will reduce their species diversity

and conservation value, and may even trigger its replace-

ment by other vegetation types more adapted to heavy

loads of grazing, such as species-poor grasslands dominated

by Agrostis capillaris. On the other hand, no grazing or even

very low pressure will allow scrub encroachment and a

decrease in the extent of both habitat types. The fact that

this and other mountainous areas in the region have

undergone changes in pastoral activities (namely aban-

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. The focal habitats as captured by the UAV platform. (a) Wet heath, habitat type 4020*, in dense/large shrub formations in concave/wet areas; (b)

habitat 4020* around a small pond; (c) continuous, species-rich Nardus grasslands, habitat type 6230*, with low shrub density; (d) 6230* habitat with bare

soil, highlighting poor habitat condition; (e) dry heath, habitat type 4030, in a mosaic with bare rock/soil areas; (f) heath (4030) encroachment on Nardus

grassland denoting degradation due to decreased grazing pressure.
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donment of husbandry and local concentration of grazing

pressure) over recent decades justifies our use of this site

for testing themethodology.

Aerial imagery and surface elevation data acquisition

and pre-processing

The general workflow of the tested methodology is

illustrated in Fig. 3 and included several steps for imagery

acquisition, post-processing, feature extraction and

selection, sampling design and field survey and, finally,

image classification and validation.

The workflow started with the acquisition of very high-

resolution aerial images (6 cm�pixel�1) at the beginning of

spring 2013 (17 Apr) using a SenseFly-SwingletCAM UAV

platform equipped with a Canon Ixus 220 HS digital

camera with 12 MP sensor (4000 9 3000 pixels).

Although spectral sensitivity data for this camera were

unavailable from the UAV manufacturer, we compared it

to 12 Canon models and calculated the average band cen-

tres (�SE) for the red, green and blue bands (see

Appendix S2 for more details). These were located, respec-

tively, at: 594 � 2, 527 � 2 and 462 � 2 nm; overall the

green band exhibited higher relative spectral sensitivity, a

common feature in commercial digital sensors (Campbell

& Wynne 2011). The flight was performed at 15:00 h

under clear sky conditions at an altitude of approximately

940 m. Additional flight parameters, such as image overlap

(set to 60% and 70% in the X and Y directions, respec-

tively), study area limits and spatial resolution were set

and uploaded to the device’s internal memory.

Before the flight, the terrain was prepared with visible

targets, later used as ground control points (GCP) for

georeferencing the aerial photographs and the digital sur-

face model (DSM). GCP positioning was collected with a

Trimble 5800 RTK dual frequency DGPS with a positional

error below 20 mm.

The photogrammetric processing, orthorectification and

mosaicing were performed with PhotoScan software

(Agisoft 2012), allowing us to obtain a very high resolution

Fig. 3. Overview of the methodological approach tested. The scheme uses dashed boxes to denote processes (bold letters signal important processing

steps), grey boxes denote specific or detailed aspects for certain processes and blue boxes indicate data.
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DSM with 10 cm�pixel�1 and an orthorectified image with

a RMSE equal to 0.628 pixel�1 in GeoTIFF format, using

theWGS1984 geographic coordinate system.

Sampling design and in-field data collection for training

and validation

Training data are required for calibrating supervised classi-

fication algorithms such as RF. In order to obtain these

data we employed a design-based systematic sampling

strategy (Gruijter et al. 2006) with ten regularly spaced

sample units with 60 9 60 m covering approximately

37% of the study area (Fig. 4). Systematic sampling allows

uniform coverage with generally more efficient and

accurate results than simple random sampling, and also

presents operational advantages, since regularity of the

grid decreased the time required to locate and move

between consecutive plots during fieldwork (Gruijter et al.

2006; K€ohl et al. 2006). Field surveys were used to collect

ground truth training/validation data, and started after

defining a suitable map legend including all observable

classes in the previously obtained UAV colour image. The

implemented protocol was based on a fine-scale in-field

photo-interpretation (over the UAV colour images) of each

sample unit by delineating each homogeneous patch

pertaining to a given dominant class. The minimum map-

ping unit was set to 0.36 m2 due to the very high spatial

resolution of the obtained orthophotos (6 cm�pixel�1) and

the fine-scale patchiness of vegetation. This field mapping

procedure was supported by previously defined spatial and

thematic criteria, thus standardizing collection processes.

Field collected data was later digitized and corrected in a

GIS environment.

Feature extraction

In order to test the usefulness of colour imagery and the

DSM obtained from the UAV platform, we calculated

several colour, band ratios and textures, as well as, surface

elevation, curvature and surface texture features from

these data. A total of 176 features were obtained (see

examples in Fig. 5; the complete list of features is pre-

sented in Appendix S3). Colour features were obtained

directly from digital number values for the red (R), green

(G) and blue (B) channels. Texture features using individ-

ual R, G and B channels were extracted by calculating the

mean, variance, skewness and kurtosis for three different

kernel sizes: 3 9 3, 5 9 5 and 9 9 9 pixels. Kernel sizes

were selected based on a preliminary visual inspection of

image patterns, balancing the ability to identify different

vegetation/habitat types (and their edges) with the loss of

detail when increasing kernel size.

Additionally, band ratios were calculated by performing

simple algebraic operations based on combinations of col-

our channels, e.g.: R/G, R/B, R/(G+B), R/(R+G+B). Using
each calculated band ratio, texture features were also

extracted by calculating the mean and variance for two

different kernel sizes: 5 9 5 and 11 9 11.

The calculation of texture features was also based on co-

occurrence matrices using Haralick indices (Haralick 1979)

for two different kernel sizes: 3 9 3 and 9 9 9, and using

as input a brightness transformation of the original RGB

image calculated as:

BRG ¼ ½ð299� RÞ þ ð587� GÞ þ ð114� BÞ�=1000:
Texture measures based on structural feature set (SFS;

Xin et al. 2007) were also calculated using the same bright-

Fig. 4. Sample units (red quadrats) over the original colour image obtained with the UAV camera. The image evidences herbaceous (grassland) and woody

(scrub) vegetation occurring in dense, complex mosaics, as well as extensive rock outcrops and some linear elements, such as water lines and tracks.
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ness transformation. Both Haralick and SFS features were

calculated using Orfeo Toolbox (CNES 2014).

Furthermore, a set of surface elevation features was

obtained from the DSM by calculating the mean and stan-

dard-deviation features for three different kernel sizes:

5 9 5, 9 9 9 and 15 9 15, representing surface rugged-

ness. Surface curvature measures were also calculated to

highlight surface convexity or concavity (Jenness 2013).

Random forest classifier training and validation

In this test, a pixel-based supervised classification frame-

work was employed by combining ground truth training

data with several colour, texture and surface features to

produce an ensemble RF classifier (Breiman 2001). This

algorithm was selected after a preliminary performance

comparison between several other classification methods,

namely: support vector machines, neural networks, k-

nearest neighbour, generalized boosted model and C5.0.

In this test, RF attained the highest accuracy and Kappa

values (see detailed information in Appendix S4), and

hence was selected to conduct the study. The R software

package (R Foundation for Statistical Computing, Vienna,

AT; http://www.r-project.org) was used for developing all

image classification routines, in particular with the ran-

domForest library (Liaw &Wiener 2002).

This stage started by generating 50 training and 50 vali-

dation data sets, each containing a stratified random draw

of 105 pixels sampled from each digitized field-surveyed

sample unit (SU). For each SU, 104 pixels were sampled

proportional to stratum area allocation, using the previ-

ously defined classes as strata and ensuring that training

pixels were not included in test sets. Due to the relatively

large number of features and aiming to decreasemulticolli-

nearity and enhance processing speed, Spearman non-

parametric correlation analysis was performed and fea-

tures with very high correlation (q ≥ 0.9) were initially

discarded. Following this step, a preliminary RF classifier

was devised and feature importance measures calculated.

After some testing, only the 20 best features (Table 3) were

kept, thus greatly reducing computation time and increas-

ing classifier performance (not shown).

Using only the selected features, the final RF classi-

fiers were developed for the previously generated train-

ing data sets. Using each trained RF classifier, we

predicted the target classes for the entire area and

ensembled the results through majority voting (i.e. for

each pixel, the class most often predicted was main-

tained in the final map). Feature importance values

were calculated and averaged across all training data sets

using the total decrease in node impurities measured

with the Gini index (Liaw & Wiener 2002).

To evaluate classification performance, we used the

validation data sets and calculated several classification

performance indices (Jolliffe & Stephenson 2003): overall

accuracy, Heidke skill score, Peirce skill score, Gerrity skill

score (see Appendix S5 for more details). To evaluate

classification performances at class level, both producer

and user accuracies were calculated.

We also compared producer and user accuracy values

obtained with our UAV-based methodology to values

collected from a semi-systematic literature review on the

state-of-the-art of habitat classification and mapping in the

context of Natura 2000 (25 articles were reviewed and two

discarded for comparison purposes; see Fig. 6). To allow a

meaningful comparison, this compilation focused only on

habitat types similar to those analysed in this study, such

as grasslands/meadows (62xx/64xx/65xx; 15 articles) and

heathlands (40xx; eight articles). See also Appendix S6 for

detailed information.

Results

Performance of the classification approach

Test results revealed a fairly good mean overall accuracy,

equal to 0.89 (Table 1). Complementarily, other perfor-

mance metrics also recorded overall good agreement

between the predicted classes and validation data, with

Gerrity skill score recording the highest value (0.86),

followed by the Peirce skill score (0.86) and, finally,

Fig. 5. Example of colour and texture features for a sample unit. From left to right: original red colour channel, Haralick, SFS and local statistics texture

features evidencing small-scale differences and fine discrimination of herbaceous (grassland), woody (scrub) vegetation and a pond.
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recording a lower performance, the Heidke skill score

(0.84). In general, as shown by SD values, overall classifi-

cation performance measures displayed low variability

across validation sets.

High values of producer and user accuracy were

obtained for habitat type 6230*, as well as for bare rock

and for ponds (Table 2, Appendix S7). Other water sur-

faces/lines, such as temporary streams, drainage channels

or small puddles, occurring mostly in the west side of the

area, obtained good accuracy values. Habitat type 4020*
and bare soil attained moderate producer accuracy values

(respectively, 0.68 and 0.65) and slightly better accuracy at

user level (0.77 and 0.80). Degraded versions of some habi-

tat types, such as 6230*, were also discriminated with fairly

good accuracy. Isolated patches of habitat type 4030, as

well as patches of this habitat interspersed with bare rock,

in poor conservation state, obtained good discrimination

accuracy in the test. Results from the analysis of SD values

showed low variability in producer and user accuracy

across validation sets.

Feature importance ranking for habitat classification

Importance metrics calculated from the RF algorithm

allowed ranking features according to their relative contri-

bution to classification (Table 3). The ranking clearly high-

lighted the importance of surface elevation textures

calculated with different kernel sizes. These features show

the complex patterning of vegetation types occurring with

varying densities at different elevations in the test area

(Fig. 7a). Lower roughness/variability in surface values

occurred (as expected) for the herbaceous habitat type

6230*, increasing up to tall shrub habitat type 4030

(Fig. 7c). Band ratio textures, especially B/R ratio, also

recorded high importance, thus greatly contributing to dis-

criminate classes. The B/R ratio texture displayed a fairly

good separation between habitat type 4030 and habitat

types 4020*/6230*, both exhibiting on average higher val-

ues for this variable (Fig. 7b). Ranking also showed that

multiple band ratios based on several band combinations

were useful for developing the RF classifier. Also ranking

in the top five is the SFSWMean feature, showing that this

type of texture descriptor was rather important for classifi-

cation purposes. Average values for this texture descriptor

showed moderate differentiation considering habitat types

4020* (with lowest WMean values), 4030 up to 6230

(recording the highest WMean values among these classes;

Fig. 7d). Although with less relative contribution, local

statistics calculated from raw colour channels using the

mean and the variance as texture descriptors were

included within the top ten of the ranking.

Table 1. Overall validationmeasures averaged across all 50 data sets.

Average SD

ACC 0.89 0.0010

HSS 0.84 0.0014

PSS 0.86 0.0015

GSS 0.86 0.0018

ACC, overall accuracy; HSS, Heidke skill score; PSS, Peirce skill score; GSS,

Gerrity skill score.

Table 2. Average producer and user accuracy values for each class.

4020* 4030 6230* 6230*

Degraded

Bare Rock Bare Rock / 4030

Degraded

Bare Soil Tracks Water Surfaces /

Water Lines

Ponds

Average Prod. acc. 0.68 0.84 0.96 0.87 0.94 0.80 0.65 0.90 0.77 0.97

Prod. Acc. SD 0.0079 0.0053 0.0013 0.0037 0.0023 0.0074 0.0072 0.0063 0.0198 0.0082

Average User Acc. 0.77 0.82 0.91 0.94 0.95 0.82 0.80 0.91 0.83 0.97

User Acc. SD 0.0070 0.0056 0.0015 0.0031 0.0026 0.0055 0.0060 0.0067 0.0133 0.0080

Values were aggregated using the mean � SD across the 50 validation datasets.

Fig. 6. Boxplot containing the distribution of producer and user accuracy

values collected from research articles on the subject of habitat

classification for similar habitat types, such as grasslands/meadows (62xx/

64xx/65xx; n = 15 articles, grey colour) and heathlands (40xx; n = 8

articles, light grey). Boxes represent the 25%, 50% and 75% quartiles and

whiskers the minimum and maximum values. Overlapped points display

producer and user accuracy values obtained from the tested UAV-based

classification for habitat types 6230* (squares), 4020* (circles) and 4030

(triangles).
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(a) (b)

(c) (d)

Fig. 7. Density plots for some of the most important features (Table 3) used to calibrate the RF classifiers, showing separation between the three habitat

types in the study. (a) Surface elevation texture, Mean, 15 9 15; (b) R/B band ratio texture, Mean, 11 9 11; (c) Surface elevation texture, SD, 15 9 15; (d)

SFS, Brightness band, WMean, Spectral threshold = 100.

Table 3. Average feature importance and overall ranking for calibrating the RF-based classifiers.

Rank Mean Decrease Gini Feature Acronym Feature Description Input and Texture Parameters

1 6573.2 DSM_SurfElevation_MN_R15 Surface elevation texture DSM, mean, 15 9 15

2 6399.5 DSM_SurfElevation_MN_R9 Surface elevation texture DSM, mean, 9 9 9

3 6328.4 DSM_SurfElevation_MN_R5 Surface elevation texture DSM, mean, 5 9 5

4 4961.3 BR_Ratio_AVG_k11 Band ratio texture B/R ratio, mean, 11 9 11

5 4695.5 SFS_WMean_LT100 SFS Brightness transform, WMean, Spectral threshold = 100

6 4451.2 LS_Mean_CH1_RD9 Local statistics R band, mean, 9 9 9

7 4014.1 LS_Var_CH3_RD9 Local statistics B band, variance, 9 9 9

8 3896.3 LS_Mean_CH2_RD9 Local statistics G band, mean, 9 9 9

9 3800.2 RB_Ratio_AVG_k11 Band ratio texture R/B ratio, mean, 11 9 11

10 3486.8 LS_Mean_CH3_RD9 Local statistics B band, mean, 9 9 9

11 3439.3 B_BGR_Ratio_AVG_k11 Band ratio texture B/(B+R+G) ratio, mean, 11 9 11

12 3210.1 HC_HG_LGRE_XR9_YR9 Haralick texture Brightness transform, Low Grey-Level Run Emphasis, 9 9 9

13 3047.1 HC_HG_SRLGE_XR9_YR9 Haralick texture Brightness transform, Short Run Low Grey-Level Emphasis, 9 9 9

14 2895.9 DSM_SurfElevation_SD_R15 Surface elevation texture DSM, SD, 15 9 15

15 2817.1 BG_Ratio_AVG_k11 Band ratio texture B/G ratio, mean, 11 9 11

16 2495.9 R_RGB_Ratio_AVG_k11 Band ratio texture R/(R+G+B) ratio, mean, 11 9 11

17 2246.9 R_BG_Ratio_AVG_k11 Band ratio texture R/(B+G) ratio, mean, 11 9 11

18 2217.7 DSM_SurfElevation_SD_R9 Surface elevation texture DSM, SD, 9 9 9

19 2213.4 GB_Ratio_AVG_k11 Band ratio texture G/B ratio, mean, 11 9 11

20 1963.9 BR_Ratio_AVG_k5 Band ratio texture B/R ratio, mean, 5 9 5

Results are aggregated across all training rounds.
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Haralick texture metrics had the lowest scores, display-

ing a relatively lower contribution to discriminate classes.

Overall in this test, larger kernel sizes used to calculate

texture features such as 9 9 9, 11 9 11 up to 15 9 15

(when compared to 3 9 3 or 5 9 5 sizes), as well as the

mean used as an aggregate function, were considered the

most important.

Distribution and extent of habitat types in the study area

The distribution and spatial arrangement of the classes in

the test area are illustrated in Fig. 7. From the classified

image, it is possible to visualize that the western portion of

the study area is far more complex, with reticulated

vegetation patterning intercalated with bare soil and shal-

low water puddles in concave areas, or bare rock in upper

areas with higher slopes. Habitat type 6230* is by far the

predominant class, covering an estimated area of 5.88 ha,

which comprises 60.63% of the test site (Table 4) and

represents the matrix of the mosaic.

A degraded version of this habitat type, with a less

favourable habitat condition (0.41 ha, or 4.26% of the

study area), occurs mostly in a single large patch located in

the southwest portion of the site. Habitat type 4020* and

all other classes occur scattered within this matrix,

occupying <10% of the area individually. Small mosaics of

drier areas, dominated by bare rock, bare soil and dry

heath, are easily distinguished from wet areas with the

focal priority habitat types and small water surfaces (Figs 2

and 8). Overall, these results are consistent with the high

grazing pressure observed in the field and possibly related

to the concentration of pastoral activities in these highly

productive mosaics.

Discussion

Strengths and caveats of the methodology

Developing methods for fine-scale mapping of valuable

habitats based on UAV imagery represents a step for-

ward in ecological assessment (Anderson & Gaston

2013). These images allow the capture of a high level

of detail and portray the 2D and 3D structure of vege-

tation from digital surface elevation models. In this test,

we developed a UAV-based assessment methodology to

map the extent of Natura 2000 priority habitats, obtain-

ing good overall accuracy, in spite of some decrease in

classification performance in situations of high inter-

spersion of vegetation types. However, comparisons

with officially reported national statistics of habitat

extent and distribution could not be performed due to

Fig. 8. Map representation of the study area, displaying the cover of different classes as predicted by ensembling of RF classifiers.

Table 4. Percentage cover and area (in ha) of each class in the study area.

Class % Cover Area (ha)

4020* 5.41 0.53

4030 8.50 0.82

6230* 60.63 5.88

6230* Degraded/Bare Soil 4.26 0.41

Bare Rock 7.01 0.68

Bare Rock/4030 Degraded 5.16 0.50

Bare Soil 4.87 0.47

Tracks 1.94 0.19

Water Surfaces/Water Lines 1.96 0.19

Ponds 0.25 0.02
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the lack of updated information and the coarseness of

existing databases.

At the class level, grasslands (habitat type 6230*), which

are the vegetation matrix in the test-site, attained better

results, while wet heath (4020*) obtained only moderate

accuracy values as evaluated with test data. Misclassifica-

tion of habitat type 4020* may be due to some degree of

generalization in the definition of complex training areas,

the patchiness of vegetation patterns in the study area, and

the tendency of this habitat type to occur in intricate

mosaics, with different species becoming locally dominant,

thus hampering its correct identification and delineation

both in the field and for classification purposes. Moreover,

there were some difficulties in distinguishing dominant

species of each type of vegetation with similar life forms.

One such example is Ulex europaeus (subsp. latebracteatus)

andU. minor, the first being dominant in habitat type 4030

(European dry heathlands) and the second dominating

much of the patches of habitat type 4020* (temperate wet

heath). Another problematic example is distinguishing

among species of perennial grass, such as A. capillaris,

A. hesperica or N. stricta. A. capillaris can be found in a large

diversity of habitats and is dominant in degraded versions

of habitat type 6230* (Nardus grasslands) and in other

types of grassland not corresponding to any particular

Annex I habitat type.

In further fine-tuning of the methodology, most of these

problems could potentially be resolved using contextual

information, e.g. percentage of rocks in neighbouring areas

may be a helpful indicator to determine the species of Ulex,

and consequently the particular Annex I habitat

type. Regarding discrimination of perennial grasses, the

co-existence with other ubiquitous mesophytic

species, such as Pteridium aquilinum, may also be a valuable

indicator.

When compared to reference producer and user accu-

racy values collected from the literature (Fig. 6), our UAV-

based approach presents above-median performance for

both grassland and heathland habitats (in most cases

>75% quartile, with the exception of producer accuracy

for habitat type 4020*). Nevertheless, these comparisons

must be interpreted only as an indirect baseline, since no

directly comparable results (i.e. applications using UAV

imagery for similar or the same habitat types) were found

in the literature, and also due to differences in input

remote sensing data (e.g. RapidEye, QuickBird, Landsat,

LiDAR) classification approach (pixel vs object-based) and

classification algorithms (e.g. support vector machines,

maximum likelihood, nearest neighbour; see Appendix S6

for more details). Comparison results suggest that UAV

low-spectral resolution may be partially compensated by

its very high, sub-decimetre spatial resolution. They also

highlight the cost-effectiveness of UAV-based methodolo-

gies, since most habitat classification approaches currently

employ very high-resolution satellite imagery (e.g. F€orster

et al. 2008; Hernando et al. 2012; Buck et al. 2015) with

comparatively higher acquisition costs.

This methodology also allowed us to distinguish several

meaningful classes as well as some degraded patches of

particular habitat types in a quite challenging, dynamic

and dense vegetation mosaic. In some cases, we were able

to detect the presence of dry heathland, bare soil patches

or shallow water puddles neighbouring habitat type

4020*, possibly identifying situations where the habitat

occurs in less favourable conservation conditions, likely

due to over-grazing and localized used of fire. We were

also able to identify patches of habitat type 6230*
exhibiting a less favourable habitat condition, related to

visible changes in the typical vegetation structure and

species assembly (as verified during in-field surveys) and

identifiable in UAV imagery as higher textural heterogene-

ity or chromatic alterations due to higher shrub density (or

encroachment) and presence of open soil (see Figs 2 and

4). This type of information may prove useful for manage-

ment and conservation of the focal habitats, and is

still poorly explored in ecological applications (with

exceptions, e.g. Spanhove et al. 2012) of UAV imagery.

Test results also highlighted the adequacy of the RF

algorithm to produce a classifier capable of coping both

with the large amount and high dimensionality of imagery

data (see also Appendix S4). In addition, low variability of

validation metrics across test data sets further showed the

high generalization ability of this algorithm. Using sam-

pling strategies to generate training/test data, such as those

developed in our methodology, and performing an initial

selection of best features, allowed us to improve classifica-

tion accuracy and reduce computation time.

Our results strongly emphasize the usefulness of

features derived from photogrammetric DSMs, as well as

different texture features calculated from colour ima-

gery, as observed in previous UAV applications (e.g.

Laliberte & Rango 2008, 2009). These features allowed

the inclusion of useful vicinal and context information

in the classification for identifying different vegetation/

habitat types and their edges. Computationally inexpen-

sive texture features such as those based on the calcula-

tion of local statistics (e.g. mean, variance) for various

kernel sizes obtained better results in comparison, e.g.

with Haralick features, which require much longer com-

putation time and resources. Band ratios, previously

highlighted as important in the context of UAV habitat/

species classification (e.g. Dunford et al. 2009; Laliberte

& Rango 2011), also obtained better results when

compared to raw input data. This may be due to the

ability of band ratios to remove much of the effect of

illumination and enhance (or reveal) latent information
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when there is an inverse relationship between two spec-

tral responses to the same biophysical phenomenon

(Campbell & Wynne 2011).

Moreover, the use of near-infrared images (not available

in our UAV platform) could be used to allow calculation of

vegetation indices (Anderson & Gaston 2013; Knoth et al.

2013; Calvi~no-Cancela et al. 2014) and improve assess-

ment of habitat extent and condition. These data, com-

bined with a 3D representation of vegetation obtained

through a canopy height model (Dandois & Ellis 2013),

could potentially contribute to further enhance classifica-

tion accuracy and the ability to diagnose the condition of

some habitat types in fine-scale mosaics.

Applications inmonitoring small-scale habitat mosaics

and future directions

The results obtained in this test, employing UAV-based

colour imagery and a DSM for the classification of a com-

plex and dynamic habitat mosaics, revealed that the

methodology can successfully discriminate a relatively

large number of classes with high to very high levels of

accuracy. This suggests that it can provide robust estimates

of class/habitat diversity, as well as of the extent of each

habitat type, which in turn may be particularly useful for

supporting mandatory Natura 2000 reporting obligations

(Vanden Borre et al. 2011), especially in EUmember states

currently lacking detailed assessments and/or standardized

procedures for such a task. UAV-based assessments show

high potential to complement previous research in the

detection and mapping of Natura 2000 habitats currently

employing satellite imagery from moderate (D�ıaz Varela

et al. 2008) to very high (F€orster et al. 2008; Hernando

et al. 2012; Schmidt et al. 2014; Buck et al. 2015) spatial

resolution, hyperspectral sensors (Haest et al. 2010; Chan

et al. 2012; Spanhove et al. 2012), radar satellite data

(Schuster et al. 2011, 2015) and LiDAR (B€assler et al.

2011; Zlinszky et al. 2014). We argue that well planned,

standardized and systematic UAV surveying over a statisti-

cally sound selection of sites could help to develop a moni-

toring system that could inform the extent, connectivity,

habitat condition and trends of Natura 2000 habitats in a

reproducible fashion and allow a reduction in running

costs and operational complexity of image acquisition

(Anderson & Gaston 2013; Mancini et al. 2013; Calvi~no-

Cancela et al. 2014). This would require the definition of

highly standardized field methods incorporating botanical,

vegetation and remote sensing expertise as a crucial step to

bridge gaps between field and UAV-based remote sensing

methods.

Covering much wider areas (by a factor of ten or 100)

than that used in this pilot test (with roughly 10 ha) would

be easily accomplished by adapting flight parameters,

performing multiple flights and/or employing UAV plat-

forms with higher operating ranges and autonomy

(Anderson & Gaston 2013). Due to the diversity and

adaptability of existing UAV platforms, it would be possi-

ble to extend surveying to other different small-scale

habitat mosaics, such as dunes (Mancini et al. 2013),

wetlands (Ishihama et al. 2012) or riparian ecosystems

(Dunford et al. 2009). In order to adequately accomplish

this, nature protection agencies and/or partner stakehold-

ers should acquire suitable UAV equipment, train their

staff in using this type of technology and develop semi-

automated procedures for image post-processing and clas-

sification, thus making it easier and faster to analyse

UAV data. In turn, long-term advantages of UAV-based

ecological monitoring related to flexible flight scheduling,

prompt availability of very high-resolution images,

reduced acquisition costs, low or absent cloud contamina-

tion (Getzin et al. 2012; Anderson & Gaston 2013) and

other factors could provide a cost-effective solution for

conservation agencies.

Acknowledgements

This study was developed as part of the LIFE+ project

‘Higro’ (Demonstrative Actions for the Conservation of Pri-

ority Habitats in Northern Mountain Areas in Portugal;

LIFE09NAT/PT/000043). Jo~ao Gonc�alves was supported

by the Portuguese Foundation for Science and Technology

(FCT; PhD grant nr. SFRH/BD/90112/2012). Rita Sousa-

Silva is supported by a PhD grant from KU Leuven in the

framework of the FORBIO Climate project, financed by

BRAIN.be, Belgian Research Action through INterdisci-

plinary research. Ant�onio T. Monteiro is supported

through the Project ‘Biodiversity, Ecology and Global

Change’, co-financed by North Portugal Regional Opera-

tional Programme 2007/2013 (ON.2 – O Novo Norte),

under the National Strategic Reference Framework

(NSRF), through the European Regional Development

Fund (ERDF). A. Lomba is supported by the PFST through

Post-Doctoral Fellowship SFRH/BPD/80747/2011. Bruno

Marcos received support from FEDER/COMPETE and FCT

through project grant ‘IND_CHANGE’ (PTDC/AAG-MAA/

4539/2012 – FCOMP-01-0124-FEDER-027863).

References

Agisoft 2012. Agisoft photoscan user manual, professional edition, v

0.9.0. aiHit - Agisoft, Cork, IE.

Anderson, K. & Gaston, K.J. 2013. Lightweight unmanned aerial

vehicles will revolutionize spatial ecology. Frontiers in Ecology

and the Environment 11: 138–146.

B€assler, C., Stadler, J., M€uller, J., F€orster, B., G€ottlein, A. &

Brandl, R. 2011. LiDAR as a rapid tool to predict forest habi-

143
Applied Vegetation Science
Doi: 10.1111/avsc.12204© 2015 International Association for Vegetation Science

J. Gonc�alves et al. UAV-based habitat mapping



tat types in Natura 2000 networks. Biodiversity and Conserva-

tion 20: 465–481.

Bielsa, I., Pons, X. & Bunce, B. 2005. Agricultural abandonment

in the North Eastern Iberian Peninsula: the use of basic land-

scape metrics to support planning. Journal of Environmental

Planning andManagement 48: 85–102.

Bolliger, J., Kienast, F., Soliva, R. & Rutherford, G. 2007. Spatial

sensitivity of species habitat patterns to scenarios of land use

change (Switzerland). Landscape Ecology 22: 773–789.

Breiman, L. 2001. Random forests.Machine Learning 45: 5–32.

Brown, J., Kothari, A., Brown, J. & Kothari, A. 2011. Traditional

agricultural landscapes and community conserved areas: an

overview. Management of Environmental Quality: An Interna-

tional Journal 22: 139–153.

Buck, O., Mill�an, V.E.G., Klink, A. & Pakzad, K. 2015. Using

information layers for mapping grassland habitat distribution

at local to regional scales. International Journal of Applied Earth

Observation and Geoinformation 37: 83–89.

Burkinshaw, A. & Bork, E. 2009. Shrub encroachment impacts

the potential for multiple use conflicts on public land. Envi-

ronmental Management 44: 493–504.

Calvi~no-Cancela, M., M�endez-Rial, R., Reguera-Salgado, J. &

Mart�ın-Herrero, J. 2014. Alien plant monitoring with ultra-

light airborne imaging spectroscopy. PLoS One 9: e102381.

Campbell, J.B. &Wynne, R.H. 2011. Introduction to remote sensing,

5th edn. Guilford Press, New York, NY, US.

Chan, J.C.-W., Beckers, P., Spanhove, T. & Borre, J.V. 2012. An

evaluation of ensemble classifiers for mapping Natura 2000

heathland in Belgium using spaceborne angular hyperspec-

tral (CHRIS/Proba) imagery. International Journal of Applied

Earth Observation and Geoinformation 18: 13–22.

CNES 2014. The ORFEO tool box software guide – updated for OTB-

4.0. Centre National d’�Etudes Spatiales: Paris, FR.

Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M.,

Garc�ıa Mill�an, V.E., Strasser, T., Vanden Borre, J., Toon, S. &

Michael, F. 2015. Remote sensing for mapping natural habi-

tats and their conservation status – new opportunities and

challenges. International Journal of Applied Earth Observation

and Geoinformation 37: 7–16.

Dandois, J.P. & Ellis, E.C. 2013. High spatial resolution three-

dimensional mapping of vegetation spectral dynamics using

computer vision. Remote Sensing of Environment 136:

259–276.

D�ıaz Varela, R.A., Ramil Rego, P., Calvo Iglesias, S. & Mu~noz

Sobrino, C. 2008. Automatic habitat classification methods

based on satellite images: a practical assessment in the NW

Iberia coastal mountains. Environmental Monitoring and Assess-

ment 144: 229–250.

Dunford, R., Michel, K., Gagnage, M., Pi�egay, H. & Tr�emelo,

M.L. 2009. Potential and constraints of unmanned aerial

vehicle technology for the characterization ofMediterranean

riparian forest. International Journal of Remote Sensing 30:

4915–4935.

European Commission 1992. Council Directive 92/43/EEC of 21

May 1992 on the conservation of natural habitats and of wild fauna

and flora, 1992L0043. The Council of the European Commu-

nities, Brussels, BE.

F€orster, M., Frick, A., Walentowski, H. & Kleinschmit, B.

2008. Approaches to utilising QuickBird data for the mon-

itoring of NATURA 2000 habitats. Community Ecology 9:

155–168.

Franco, J.A. 1984. Nova Flora de Portugal (Continente e Ac�ores). Vol.
II, Clethraceae-Compositae. Author’s Edition, Lisbon, PT.

Franco, J.A. & Afonso, M.R. 1998. Nova Flora de Portugal (Conti-

nente e Ac�ores). Vol. III (Fasc. II), Gramineae. Escolar Editora,

Lisbon, PT.

Getzin, S., Wiegand, K. & Sch€oning, I. 2012. Assessing biodiver-

sity in forests using very high-resolution images and

unmanned aerial vehicles.Methods in Ecology and Evolution 3:

397–404.

Gonz�alez-Orozco, C.E., Mulligan, M., Trichon, V. & Jarvis, A.

2010. Taxonomic identification of Amazonian tree crowns

from aerial photography. Applied Vegetation Science 13: 510–

519.

Goodall, D.W. & Perry, R.A. 2009. Arid land ecosystems: volume 2,

structure, functioning and management. Cambridge University

Press, Cambridge, UK.

Gross, J.E., Goetz, S.J. & Cihlar, J. 2009. Application of remote

sensing to parks and protected area monitoring: introduction

to the special issue. Remote Sensing of Environment 113:

1343–1345.

Gruijter, J.D., Brus, D., Bierkens, M. & Knotters, M. 2006. Sam-

pling for natural resource monitoring. Springer, Berlin, DE.

Haest, B., Thoonen, G., Borre, J.V., Spanhove, T., Delalieux, S.,

Bertels, L., Kooistra, L., M€ucher, C.A. & Scheunders, P.

2010. An object-based approach to quantity and quality

assessment of heathland habitats in the framework of Natura

2000 using hyperspectral airborne images. In: Addink, E.A.

& Coillie, F.M.B.V. (eds.) GEOBIA 2010: geographic object-based

image analysis, pp. 6. GEOBIA/ISPRS, Ghent, BE.

Halada, L., Evans, D., Rom~ao, C. & Petersen, J.-E. 2011. Which

habitats of European importance depend on agricultural

practices? Biodiversity and Conservation 20: 2365–2378.

Haralick, R.M. 1979. Statistical and structural approaches to tex-

ture. Proceedings of the IEEE 67: 786–804.

Hernando, A., Arroyo, L.A., Vel�azquez, J. & Tejera, R. 2012.

Object-based image analysis for mapping Natura 2000 habi-

tats to improve forest management. Photogrammetric Engi-

neering & Remote Sensing 78: 991–999.

Huang, X., Zhang, L. & Li, P. 2007. Classification and extraction

of spatial features in urban areas using high-resolution mul-

tispectral imagery. IEEE Geoscience and Remote Sensing Letters

4: 260–264.

Husson, E., Hagner, O. & Ecke, F. 2014. Unmanned aircraft sys-

tems help to map aquatic vegetation. Applied Vegetation

Science 17: 567–577.

Immitzer, M., Atzberger, C. & Koukal, T. 2012. Tree species clas-

sification with Random forest using very high spatial resolu-

tion 8-band worldView-2 satellite data. Remote Sensing 4:

2661–2693.

Applied Vegetation Science
144 Doi: 10.1111/avsc.12204© 2015 International Association for Vegetation Science

UAV-based habitat mapping J. Gonc�alves et al.



Ishihama, F., Watabe, Y. & Oguma, H. 2012. Validation of a

high-resolution, remotely operated aerial remote-sensing

system for the identification of herbaceous plant species.

Applied Vegetation Science 15: 383–389.

Jenness, J. 2013. DEM surface tools for ArcGIS (surface_area.exe).

Jenness Enterprises, Flagstaff, AZ.

Jolliffe, I.T. & Stephenson, D.B. 2003. Forecast verification – a prac-

titioner’s guide in atmospheric science, 1st edn. John Wiley &

Sons, Chichester, UK.

Knoth, C., Klein, B., Prinz, T. & Kleinebecker, T. 2013.

Unmanned aerial vehicles as innovative remote sensing plat-

forms for high-resolution infrared imagery to support

restoration monitoring in cut-over bogs. Applied Vegetation

Science 16: 509–517.

K€ohl, M., Magnussen, S. & Marchetti, M. 2006. Sampling meth-

ods, remote sensing and GIS multiresource forest inventory.

Springer, Berlin, DE.

Laliberte, A. & Rango, A. 2008. Incorporation of texture, inten-

sity, hue, and saturation for rangeland monitoring with

unmanned aircraft imagery. In: Hay, G.J., Blaschke, T. &

Marceau, D. (eds.) GEOBIA proceedings, pp. 4/C1. GEOBIA/

ISPRS, Calgary, CA.

Laliberte, A.S. & Rango, A. 2009. Texture and scale in object-

based analysis of subdecimeter resolution unmanned aerial

vehicle (UAV) imagery. IEEE Transactions on Geoscience and

Remote Sensing 47: 761–770.

Laliberte, A.S. & Rango, A. 2011. Image processing and classifica-

tion procedures for analysis of sub-decimeter imagery

acquired with an unmanned aircraft over arid rangelands.

GIScience & Remote Sensing 48: 4–23.

Liaw, A. & Wiener, M. 2002. Classification and regression by

randomForest. R News 2: 18–22.

MacDonald, D., Crabtree, J.R., Wiesinger, G., Dax, T., Stamou,

N., Fleury, P., Gutierrez Lazpita, J. & Gibon, A. 2000. Agri-

cultural abandonment in mountain areas of Europe: envi-

ronmental consequences and policy response. Journal of

Environmental Management 59: 47–69.

Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S. &

Gabbianelli, G. 2013. Using unmanned aerial vehicles (UAV)

for high-resolution reconstruction of topography: the struc-

ture from motion approach on coastal environments. Remote

Sensing 5: 6880–6898.

Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H.G., Taran-

tino, C., Adamo, M. & Mairota, P. 2013. Remote sensing for

conservation monitoring: assessing protected areas, habitat

extent, habitat condition, species diversity, and threats. Eco-

logical Indicators 33: 45–59.

Ninyerola, M., Pons, X. & Roure, J.M. 2005. Atlas Clim�atico Digital

de la Pen�ınsula Ib�erica. Metodolog�ıa y aplicaciones en bioclima-

tolog�ıa y geobot�anica. Universidad Aut�onoma de Barcelona,

Bellaterra, ES.

Pal, M. 2005. Random forest classifier for remote sensing

classification. International Journal of Remote Sensing 26:

217–222.

Peel, M.C., Finlayson, B.L. & McMahon, T.A. 2007. Updated

world map of the K€oppen–Geiger climate classification.

Hydrology and Earth Systems Science 11: 1633–1644.

Permuter, H., Francos, J. & Jermyn, I. 2006. A study of

Gaussian mixture models of color and texture features

for image classification and segmentation. Pattern Recogni-

tion 39: 695–706.

Plieninger, T. 2006. Habitat loss, Fragmentation, and Alteration

– quantifying the impact of land-use changes on a Spanish

Dehesa landscape by use of aerial photography and GIS.

Landscape Ecology 21: 91–105.

Rodriguez-Galiano, V.F. & Chica-Rivas, M. 2012. Evaluation of

different machine learning methods for land cover mapping

of a Mediterranean area using multi-seasonal Landsat

images and Digital Terrain Models. International Journal of

Digital Earth 7: 492–509.

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M.

& Rigol-Sanchez, J.P. 2012. An assessment of the effective-

ness of a random forest classifier for land-cover classification.

ISPRS Journal of Photogrammetry and Remote Sensing 67: 93–

104.

Romero Garc�ıa, A.T., Blanca L�opez, G. & Morales Torres, C.

1988. Revisi�on del g�enero Agrostis L. (Poaceae) en la pen�ın-

sula ib�erica. Ruizia 7: 1–160.

Sala, O.E., Stuart Chapin, F. III, Armesto, J.J., Berlow, E.,

Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke,

L.F., Jackson, R.B., (. . .) & Wall, D.H. 2000. Global biodiver-

sity scenarios for the year 2100. Science 287: 1770–1774.

Schmidt, T., Schuster, C., Kleinschmit, B. & Forster, M. 2014.

Evaluating an intra-annual time series for grassland classifi-

cation – howmany acquisitions and what seasonal origin are

optimal? IEEE Journal of Selected Topics in Applied Earth Obser-

vations and Remote Sensing 7: 3428–3439.

Schuster, C., Ali, I., Lohmann, P., Frick, A., F€orster, M. & Klein-

schmit, B. 2011. Towards detecting swath events in Terra-

SAR-X time series to establish NATURA 2000 grassland

habitat swath management as monitoring parameter. Remote

Sensing 3: 1308–1322.

Schuster, C., Schmidt, T., Conrad, C., Kleinschmit, B. & F€orster,

M. 2015. Grassland habitat mapping by intra-annual time

series analysis – comparison of RapidEye and TerraSAR-X

satellite data. International Journal of Applied Earth Observation

and Geoinformation 34: 25–34.

Spanhove, T., Vanden Borre, J., Delalieux, S., Haest, B. & Pae-

linckx, D. 2012. Can remote sensing estimate fine-scale qual-

ity indicators of natural habitats? Ecological Indicators 18:

403–412.

Vanden Borre, J., Paelinckx, D., M€ucher, C.A., Kooistra, L., Haest,

B., De Blust, G. & Schmidt, A.M. 2011. Integrating remote

sensing in Natura 2000 habitat monitoring: prospects on the

way forward. Journal for Nature Conservation 19: 116–125.

Waldhardt, R., Simmering, D. & Otte, A. 2004. Estimation and

prediction of plant species richness in a mosaic landscape.

Landscape Ecology 19: 211–226.

145
Applied Vegetation Science
Doi: 10.1111/avsc.12204© 2015 International Association for Vegetation Science

J. Gonc�alves et al. UAV-based habitat mapping



Weiers, S., Bock, M., Wissen, M. & Rossner, G. 2004. Mapping

and indicator approaches for the assessment of habitats at

different scales using remote sensing and GISmethods. Land-

scape and Urban Planning 67: 43–65.

Xin, H., Liangpei, Z. & Pingxiang, L. 2007. Classification and

extraction of spatial features in urban areas using high-reso-

lutionmultispectral imagery. IEEE Geoscience and Remote Sens-

ing Letters 4: 260–264.

Zhang, C. & Xie, Z. 2013. Object-based vegetation mapping

in the Kissimmee River watershed using HyMap data

and machine learning techniques. Wetlands 33: 233–

244.

Zlinszky, A., Schroiff, A., Kania, A., De�ak, B., M€ucke, W., V�ari,
�A., Sz�ekely, B. & Pfeifer, N. 2014. Categorizing grassland

vegetation with full-waveform airborne laser scanning: a

feasibility study for detecting Natura 2000 habitat types.

Remote Sensing 6: 8056–8087.

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1. Test-site photographs recorded during in-

field campaigns.

Appendix S2. Spectral sensitivity data for Canon cam-

eras.

Appendix S3. Features used for supervised image classifi-

cation.

Appendix S4. Preliminary cross-validation results com-

paring the performance of candidate classification algo-

rithms.

Appendix S5. Overall classification performance mea-

sures.

Appendix S6. References used for comparing producer

and user accuracy values.

Appendix S7.Confusionmatrix calculated from test set 1.

Applied Vegetation Science
146 Doi: 10.1111/avsc.12204© 2015 International Association for Vegetation Science

UAV-based habitat mapping J. Gonc�alves et al.


