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Abstract

Global environmental changes are rapidly affecting species’ distributions and habitat suitabil-

ity worldwide, requiring a continuous update of biodiversity status to support effective deci-

sions on conservation policy and management. In this regard, satellite-derived Ecosystem

Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem

responses to environmental drivers and changes than climate and structural or compositional

landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution

Models (SDMs) and for implementing multi-scale species monitoring programs. Here we

describe a modelling framework to assess the predictive ability of EFAs as Essential Biodi-

versity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales.

We test the framework with a multi-scale assessment of habitat suitability for two plant spe-

cies of conservation concern, both protected under the EU Habitats Directive, differing in

terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted

four sets of SDMs for the two test species, calibrated with: interpolated climate variables;

landscape variables; EFAs; and a combination of climate and landscape variables. EFA-

based models performed very well at the several scales (AUCmedian from 0.881±0.072 to

0.983±0.125), and similarly to traditional climate-based models, individually or in combination

with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-

based models identified additional suitable areas and provided valuable information on func-

tional features of habitat suitability for both test species (narrowly vs. widely distributed), for

both coarse and fine scales. Our results suggest a relatively small scale-dependence of the

predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs

from regional and broader scales to more local and finer scales. Since the evaluation of spe-

cies’ conservation status and habitat quality should as far as possible be performed based on

scalable indicators linking to meaningful processes, our framework may guide conservation

managers in decision-making related to biodiversity monitoring and reporting schemes.
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Introduction

Global environmental changes are affecting species distributions and ecosystem functioning

worldwide, with profound effects in terms of loss and relocation of biodiversity [1,2]. Thus, a

continuous update of biodiversity status and the effectiveness of conservation policies are

international goals for the coming years [3,4]. Different approaches combining statistical

modelling tools and biodiversity monitoring have allowed to quantify and assess biodiversity

distribution and change across scales [5,6]. One of the most common approaches for assessing

species distribution and dynamics has been the development of Species Distribution Models

(SDMs) [7–9] (and references therein). Species Distribution Models (SDMs) can be defined as

associative models for quantifying species-environment relationships, and are thus based on

assessing the species’ ecological niche [10,11]. From a theoretical perspective [12], the species

fundamental niche is a result of limiting abiotic factors at a broad geographical scale, typically

related to climate or edaphic and geological properties [13]; whereas the realized niche is

defined at a finer scale by habitat and biotic factors, mainly related to interspecific competition

and dispersal ability, among others [14]. In the context of SDMs, the ecological niche is consid-

ered as a hypervolume in multivariate environmental space that depicts a species’ environmen-

tal requirements or limitations [12,15]. Once the ecological niche of a species has been defined

through statistical functions, these can be applied to scenarios of climate or landscape condi-

tions to project the future variation of the species’ distribution. However, the application of

SDMs in conservation and management is still hampered by significant spatial and temporal

biases (e.g. taxonomy errors, sampling overlapping, interpolations with insufficient data, inac-

curacies in geo-referencing, etc.), both in species occurrence data, and in the set of predictive

variables that represent the environmental variability [16].

One of the major drawbacks of species distribution modelling is that species occurrences

are usually available at coarse resolutions [17], while their conservation and management

within protected areas are needed at finer resolutions [18,19]. Another drawback is that many

predictive variables are not measurable or available at the required resolution, so surrogates

and interpolated data (e.g. from meteorological stations) have to be used instead [20,21]. Struc-

tural predictors derived from thematic cartography, such as land-cover variables, also hold

limitations since they may not represent relevant landscape features nor the ecosystem pro-

cesses relevant for the target species. Furthermore, both occurrence data and predictor vari-

ables can have inadequate or dissimilar spatial, thematic and/or temporal resolutions [22].

Earth observation techniques are becoming a fundamental toolkit to deal with some of

these modelling biases and drawbacks [23–26]. Satellite remote sensing offers continuous and

cost-effective measures of both abiotic and biotic factors across space and time, hardly quanti-

fiable by other means [27,28]. Recent products derived from multispectral and hyperspectral

sensors are playing a key role in the quantification, assessment and forecasting of biodiversity

[29–31] by providing meaningful information to predict species distributions through climatic

variables [32] as well as structural [33] or functional descriptors of ecosystems [34,35].

The use of satellite-derived ecosystem functional attributes (EFAs) as predictors in SDMs

can have some advantages [35]. EFAs are descriptors of the overall ecosystem functioning

[36,37], i.e. the exchanges of matter and energy between the biota and the physical environ-

ment, including, among others, indicators of productivity, seasonality and phenology of car-

bon gains [38–41]. At the regional scale over natural vegetation, EFAs are mainly driven by

climate while they are more linked to land-cover and land-use at the local scale and with

increasing human influence [39]. This way, EFAs offer an integrative and quicker view of eco-

system responses to environmental drivers and changes than structural or compositional attri-

butes [42], linking species responses to pressures on ecosystem functioning and state [35],
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which is an advantage for implementing species monitoring programs [9,37,43]. Most impor-

tantly, EFAs can be monitored through remote sensing and derived globally under common

protocols at relatively high temporal and spatial resolutions, which is particularly interesting

for tracking and forecasting biodiversity changes when applied in SDMs [35]. In addition,

EFAs can also help to overcome drawbacks of current climate and land-cover datasets, such as

their difficulty to be updated [41] and the interpolation effects [32]. Alcaraz-Segura et al. [35]

already provided a first illustration of the potential added-value of EFAs as meaningful spe-

cies-level Essential Biodiversity Variables (EBVs) [30,44,45] to guide monitoring schemes for

multiple protected species, due to their good predictive power in SDMs.

Several studies indicate that climate impacts on species distributions are most apparent at

macro-scales [6,46], whereas land-cover may be a more important constraint than climate for

species presence at the local scale [25,47]. The predictive role of EFAs in SDMs may thus be

scale-dependent, as demonstrated for other abiotic and biotic predictors [48–50]. In addition,

the relevance of EFAs for range shifts prediction is known to vary across groups of species

[35]. Accounting for these potential caveats of the application of EFAs in SDMs is of high

importance for real-world conservation challenges [51], particularly to assess the status and

trends of species of conservation concern [52]. Building on this rationale and on the model-

assisted biodiversity monitoring approach [9,35], the main goal of this study is to assess the

predictive ability of remotely-sensed ecosystem functional attributes (EFAs) in Species Distri-

bution Models (SDMs), and thereby to test their potential as Essential Biodiversity Variables

(EBVs) for biodiversity monitoring and reporting. For this, we developed and applied a multi-

scale modelling framework under two specific objectives: 1) to compare the performance and

scale-dependence (in terms of spatial extent and resolution) of EFAs as predictors in SDMs,

against traditional climate and land-cover predictors; and 2) to compare the spatial projections

of habitat suitability derived from SDMs based on EFAs and on traditional predictors at vari-

ous scales, and the corresponding implications for reporting the conservation status of pro-

tected species (e.g. under Art. 17 of the Habitats Directive [53]), and for guiding local

conservation strategies. Our testable hypotheses and their underlying rationale are detailed

below (‘Modelling framework’ section).

Materials and methods

Study areas

We tested our multi-scale approach using three nested study areas (Fig 1): The Iberian Penin-

sula (IP), the Iberian Northwest (Galicia in Spain, and northern Portugal; NW), and the

Peneda-Gerês National Park, in Portugal (NP). We established the IP (581000 km2) as the bio-

geographic context of reference to fit sub-continental models, since its combination of natural

history, geologic and topographic heterogeneity, and strong climatic gradients offers a wide

range of environmental conditions for hosting a broad variety of endemic and rare plants [54].

Within the IP, we considered the northwest corner (NW), and within it the Peneda-Gerês

National Park (NP), to fit regional and local models, respectively. The NW (48000 km2) is a

diverse phytogeographic area with a diversified flora (ca. 2300 native species) dominated by

Eurosiberian and Mediterranean elements, and with a large number of narrow endemics and

biogeographic disjunctions [55]. Peneda-Gerês (700 km2) is a mountain range hosting more

than 800 plant species, including various narrowly distributed endemics and other regionally

rare species.

The Iberian Peninsula (Fig 1A and 1B) is characterized by a strong climatic gradient, from

the rainiest and coldest areas with temperate climate in the north and northwest (Euro-Sibe-

rian region), to the driest and warmest areas in the south and southeast (Mediterranean
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region). This environmental context grants a high diversity of habitats and biotic communi-

ties. The Euro-Siberian (Atlantic) region holds vegetation types such as alpine natural and

seminatural grasslands and heathlands, and forest ecosystems with alpine needleleaf conifer-

ous and temperate broadleaf deciduous and semideciduous species; whereas the Mediterra-

nean region is primarily represented by evergreen broadleaf and conifer canopy species in

Fig 1. Study areas and species occurrence data. (a) The three nested study areas and occurrence data of target species (Iris boissieri and Taxus baccata) in

(b) the Iberian Peninsula at 5km2 cell size, (c) the Iberian Northwest at 5km2 (empty squares) and 1km2 (filled squares), and (d) the Peneda-Gerês

National Park at 1km2 cell size.

https://doi.org/10.1371/journal.pone.0199292.g001
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forest ecosystems, and a huge representation of shrub and herbaceous species able to resist the

adverse conditions of long summer-drought periods. Landscapes in both regions have been

largely transformed by human management, first through a combination of farming, grazing,

fires, and firewood collection, more recently into specialized agricultural, agro-forestry or for-

estry production landscapes. Protected areas across the IP now hold most of its remaining

mosaics of natural and seminatural vegetation.

The NW of the Iberian Peninsula (Fig 1C) is a mountainous territory with altitudes ranging

from sea level to 2650 m, with slopes often over 25%. The climate is quite varied, but follows a

general oceanic pattern with annual rainfall from 600 to 2000 mm (3000 mm in mountain

areas) [56]. The average annual temperature ranges from 5˚C in the highest mountains to

15˚C in the lowland southern territories. In spite of the great influence of human activities,

and the expansion of alien species for timber production and ornamental use, the current veg-

etation still holds similarities with the European Atlantic flora [57,58]. Deciduous forest domi-

nated mainly by Quercus robur and Fagus sylvatica usually appear restricted to the top-half of

the region, namely inside protected areas. Mixed forests of Ulmus sp., Acer sp., and Salix sp.,

among others, are mostly frequent at the southwest. Replacing forests, seral scrub of thorny

bushes (Cytisus sp., Ulex sp. and other) are common across the region, as are meadows and

other grasslands which play a relevant role in traditional agricultural systems. Towards south,

the transition into the Mediterranean region is revealed by the occurrence (and dominance) of

evergreen vegetation such as forests of Quercus rotundifolia, Q. suber, Q. faginea and scrub

dominated by Arbutus unedo and other evergreen shrubs.

The Peneda-Gerês National Park (NP; Fig 1D) is a mountainous protected area located at

the core of NW Iberia. The average annual temperatures range from 5˚C in the highlands to

20˚C in the valleys; whereas the total mean rainfall reaches 2000 mm per year (with more than

130 rainy days per year), and snowfall is frequent in the mountain tops. The steep topographic

and climatic variations have produced a mosaic of vegetation types characteristic of Mediterra-

nean, Euro-Siberian and Alpine environments. Deciduous oak forests of Q. robur and Q. pyre-
naica are common throughout the Park in areas above 700m. Still, long-term grazing and the

use of fire have facilitated the replacement of forests by pastures, heath and scrub (74% of the

Park’s area). Forest plantations mainly of Pinus pinaster also occupy substantial areas. The

highest rocky outcrops and remote areas are the main habitat for several endemic species,

many of which are considered endangered and are under national and European protection

programs.

Test species and occurrence data

As test species, we focused on two vascular plants covered by the Habitats Directive (hereafter

HD) and for which EU member-states hold regular reporting obligations (under Article 17 of

the HD): the ‘Gerês lily’ (Iris [Xiphion] boissieri Henriq.; Annex IV), an endemic, narrow-ran-

ged bulbous plant holding a ‘critically endangered’ conservation status (http://www.

iucnredlist.org/details/162312/0), and the ‘European yew’ (Taxus baccata L.), indicator and

dominant species of HD Annex I priority habitat type 9580� (‘Mediterranean Taxus baccata
woods’). These two species sharply differ in terms of their distribution range (narrowly vs.
widely distributed) and life-form (bulbous geophyte vs. tree), representing contrasting rarity

types and thus different challenges for predictive niche modelling.

The Gerês-lily (Xiphion boissieri (Henriq.) Rodion = Iris boissieri Henriq.) is a narrow

endemic bulbous plant of the Iridaceae family. It is listed in Annex IV of the HD and is

restricted to mountainous areas of NW Iberian Peninsula. Portugal concentrates the largest

populations of the species, especially in the Peneda-Gerês National Park, whereas in Spain it

Ecosystem functional attributes as predictors in species distribution models
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occurs as small populations in the neighbouring Sierras of Baixa Limia-Xurés and Santa Eufé-

mia and in a few other mountains (https://eunis.eea.europa.eu/species/186604). It mainly colo-

nizes small depressions with accumulation of coarse deposits, but it also occurs in low scrub

and in crevices of granite outcrops, at elevations between 500 and 1500 meters [55]. The aban-

donment of pastoral systems is triggering vegetation succession and potentially reducing its

area of suitable habitat [59].

The European yew (Taxus baccata) is a long-living tree native in most of Europe, with the

southern limit of its distribution range in mountainous areas of the Mediterranean basin

[60,61]. There is evidence of strong regression in southwest Europe, where T. baccata now

occurs as small, isolated populations, making it a vulnerable species [62]. T. baccata woodlands

may originate as a senescent or disturbed phase of deciduous woodlands, in which the species

occurred as an understory tree. Yew stands can also be found along mountain streams where

the trees can shelter from fire disturbance and from expansion of tall canopy broadleaved

trees. Even if this habitat type is protected under the HD (https://eunis.eea.europa.eu/habitats/

10239), there is a lack of knowledge about the distribution and conservation status of T. bac-
cata woodlands in this southern edge of their range [63,64].

We used occurrence records for I. boissieri and T. baccata (presence-only dataset) to com-

pute the response variables for SDM calibration. All georeferenced records were obtained

from the Global Biodiversity Information Facility (http://www.gbif.org; accessed September

2016) with geographic accuracy equal to, or better than, 1 km2 spatial resolution. An additional

set of 72 records resulting from a local (Peneda-Gerês) survey of I. boissieri performed in 2007

was added to this dataset. Subsequently, records were checked using GIS to detect georeferen-

cing and species nomenclature errors. The final occurrence dataset was assumed to represent

the whole (or most of the) geographic and environmental range of both species (cf. Fig 1). The

final dataset for I. boissieri included records that ranged from 1992 to 2007, while for T. baccata
they ranged from 1971 to 2016 (Table 1) (S1 and S2 Datasets).

To test our modelling approach at the three focal scales, the available records were then

aggregated in two spatial grids with distinct cell size– 5 km2 for the sub-continental (IP) and

the regional (NW) scales, and 1 km2 for the regional (NW) and the local (NP) scales. The test

was thus conducted considering two dimensions of spatial scale: the resolution of the species

records (1x1 km vs. 5x5 km grid cell size) and the spatial extent of the test area (IP vs. NW vs.
NP).

Modelling framework

There is accumulated evidence of the importance of climatic and land-cover predictors in

SDMs, their performance and scale-dependence [20,65]. Remote sensing can also provide a

broad diversity of environmental descriptors [26] to SDMs, but there is still little knowledge of

Table 1. Occurrence data (number of grid cells) available per species at each combination of spatial resolution

and spatial extent.

Spatial resolution Spatial extent Species distribution records

Iris boissieri Taxus baccata
5km2 IP 30 440

5km2 NW 30 37

1km2 NW 91 139

1km2 NP 62 50

IP = Iberian Peninsula; NW = North-western Iberian Peninsula; NP = Peneda-Gerês National Park

https://doi.org/10.1371/journal.pone.0199292.t001
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the predictive ability of the different variables, and of the effect of spatial extent and data reso-

lution (but see [66,67]). To assess the predictive ability of remotely-sensed EFAs in SDMs, we

established testable guiding hypotheses (Table 2) based on literature review and expert knowl-

edge. To test these hypotheses, we developed a modelling setup (Fig 2) that involved two spe-

cies, two spatial resolutions, three spatial extents (Fig 2), and four groups of predictors

(Table 3): 1) interpolated climate data, 2) landscape composition, structure and diversity met-

rics, 3) remotely sensed proxies of vegetation functioning (EFAs), and 4) a combination of cli-

mate and landscape (land-cover) metrics. This modelling setup was also designed to facilitate

the interpretation of EFA predictors in terms of climatic and land-cover constraints, and the

identification of the most relevant predictors at each of the focal scales.

Environmental predictors. The set of predictors used for SDM calibration included

(Table 3):

Table 2. Specific testable hypotheses for comparison of the performance and scale-dependence (in terms of spatial extent and resolution) of ecosystem functional

attributes (EFAs) against traditional climate and land-cover datasets in Species Distribution Models (SDMs).

Hypotheses Rationale

H1 Given that EFAs capture the overall integrative response of the system to all environmental factors [35,38], remotely-sensed EFAs should perform as

predictors in SDMs similarly or better than the combination of interpolated climatology grids plus land-cover data.

H2 Being climate the main species driver at the regional scale and land-cover relatively more important at the local scale (e.g. [6]), the added-value of EFAs

will also be scale-dependent.

H3 As observed in previous studies [35], such scale-dependence

should differ according to the species distribution range.

H3.1 For a narrowly distributed species, climate should perform better than EFAs at

macro-scales and coarse resolutions, while they should similarly perform at local

scales and fine resolutions.

H3.2 For a widely distributed species, climate and EFAs should perform similarly both at

macro-scales and coarse resolutions, and at local scales and fine resolutions.

https://doi.org/10.1371/journal.pone.0199292.t002

Fig 2. Multi-scale modelling framework. General framework to test the scale-dependence of the performance of

satellite-derived Ecosystem Functional Attributes (EFAs) as predictors in Species Distribution Models (SDMs).

https://doi.org/10.1371/journal.pone.0199292.g002
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1. Bioclimatic variables (CLI) mainly related to temperature and precipitation regimes, from

the WorldClim version 2 (1970–2000 period) database with a spatial resolution of 30 arc-

seconds (~1 km) (http://www.worldclim.org; [68]). CLI predictors were selected for their

predictive ability as well-known drivers of species distributions at broader scales [69]. The

complete CLI dataset included 19 candidate predictors.

2. Several studies have shown the importance of landscape composition and configuration

for predicting the distribution of species [70]. We therefore computed several landscape

Table 3. Final sets of predictors used to calibrate models. The description and attributes of the original datasets are also provided.

Set Predictors Code Description Units Spatial

resolution

Source

CLI Mean Temperature of Wettest

Quarter

TmWQ The average temperature of the three consecutive

months with the highest cumulative precipitation total.

˚C�10 0.0083˚

(~1 km)

http://www.worldclim.org

Mean Temperature of Driest

Quarter

TmDQ The average temperature of the three consecutive

months with the lowest cumulative precipitation total.

Temperature Annual Range TAR The mean difference between the month’s maximum

and minimum temperature over the twelve months of

the year.

Precipitation of Wettest

Month

PpWM The total precipitation that prevails during the wettest

month (with the highest cumulative precipitation total).

mm

Precipitation of Driest Month PpDM The total precipitation that prevails during the driest

month (with the lowest cumulative precipitation total).

Precipitation Seasonality

(Coefficient of Variation)

PS The ratio of the standard deviation of the monthly total

precipitation to the mean monthly total precipitation

over the course of the year.

LC Composition Agriculture agric Areas characterized by herbaceous vegetation that has

been planted or is intensively managed for the

production of food, feed, or fiber.

%

area

0.00083˚

(~100 m)

http://land.copernicus.eu/

Forest forest Areas characterized by tree cover, natural or semi-

natural woody vegetation, generally greater than 6

meters tall.

Scrubs scrubs Areas characterized by natural or semi-natural woody

vegetation with aerial stems, generally less than 6 meters

tall, with individuals or clumps not touching to

interlocking.

Bare soil bs Areas characterized by bare rock, gravel, sand, silt, clay,

or other earthen material, with little (widely spaced and

scrubby) or no "green" vegetation present regardless of

its inherent ability to support life.

Diversity Shannon’s

Diversity Index

SHDI Proportion of the landscape occupied by a given patch

class.

Structure Mean Patch

Area

AREAmean The average mean surface of patches.

EFAs ALB Annual Maximum ALBmx The average between Daytime Black-Sky (Direct

radiation) Shortwave Albedo and White-Sky (Diffuse

radiation) Shortwave Albedo.

- 0.002˚

(~250 m)

https://lpdaac.usgs.gov/

dataset_discovery/modis/

modis_products_table/

mod13q1EVI Annual Maximum EVImx The interannual mean of the EVI maximum.

EVI Annual Minimum EVImn The interannual mean of the EVI minimum.

EVI sine of the momentum of

maximum

EVIdmxs The momentum of the maximum green-up days of year

decomposing it into the sine orthogonal vector related

to springiness and autumness axis.

LST Standard Deviation LSTsd The interannual standard deviation of the Land Surface

Temperature mean.

˚C

LST Annual Minimum LSTmn The interannual mean of the Land Surface Temperature

minimum.

https://doi.org/10.1371/journal.pone.0199292.t003
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variables from the CORINE Land Cover 2006 (Label 3) database with a spatial resolution of

100 meters (http://land.copernicus.eu/pan-european/corine-land-cover). Composition

metrics were computed as % of grid cell area covered by each LC class. We also computed

spatial configuration metrics using the FRAGSTATS software (version 4.2) [71]. The com-

plete landscape dataset (LC) included 61 composition and configuration candidate

predictors.

3. Ecosystem Functional Attributes (EFAs). Three MODIS (Moderate Resolution Imaging

Spectroradiometer) satellite-products were selected to describe three dimensions of ecosys-

tem functioning: the Enhanced Vegetation Index (EVI) (MOD13Q1.006) as a surrogate for

the carbon cycle dynamics, the Land Surface Temperature (LST) (MOD11A2.005) as a sur-

rogate of sensible heat dynamics, and Albedo (MCD43B3.005) as a surrogate for the radia-

tive balance [37], all for the 2001–2016 period at the original spatial resolution of 230m. We

selected EVI instead of any other vegetation index (such as SAVI, ARVI, or NDVI) as an

indicator of carbon gains since it is known to be more reliable in both low and high vegeta-

tion cover situations, and resistant to both soil influences and canopy background signals,

and atmospheric effects on vegetation index values [72,73]. For these three dimensions of

ecosystem functioning (EVI, LST and Albedo), we used Google Earth Engine [74] to derive

the inter-annual mean of the following eight summary metrics of their seasonal dynamics:

annual mean (surrogate of annual total amount), annual maximum and minimum (indica-

tors of the annual extremes), seasonal standard deviation (descriptor of seasonality), and

sine and cosine of the dates of maximum and minimum (indicators of phenology)

[35,39,75]. EVI values ranged from -1 to 1, with healthy vegetation generally holding values

between 0.20 and 0.80. Temperatures (LST) ranged from -25˚C to 45˚C, and Albedo values

ranged from 0 to 1 (fresh snow and bare soil usually fall around 0.9). Sine and cosine of the

maximum and minimum green-up days of the year are related to springiness/autumness

and winterness/summerness, respectively [39,76]. Thus, values near +1 on the sine are in

March/April, near –1 are in September/October, while values near +1 for the cosine are in

December/January, –1 are in June/July. The complete EFAs dataset included 24 ecosystem

functional attributes (8 metrics x 3 dimensions) as candidate predictors.

All datasets were re-projected to coordinate system WGS84/UTM zone 30 (http://

spatialreference.org/ref/epsg/wgs-84) and resampled from their original spatial resolutions to

the resolution of species occurrence records. Resampling was first done to a 1km2 for usage in

the regional (NW) and local (NP) scale models, and to a 5 km2 cell size for the regional (NW)

and sub-continental (IP) scale models. As highly correlated variables may hamper the fitting

and validation of models [77], we conducted a multicollinearity analysis of datasets using the

Spearman’s correlation coefficient and the Variance Inflation Factor (VIF) [78,79]. Consider-

ing further that the number of explanatory variables in the models influence both accuracy

and predictive power [80], and that the species’ prevalence has a strong impact on model per-

formance [81], we established that no more thanm/5 predictors should be included in each

competing model for both the narrow-ranged and the wide-ranged species, where m is the

number of occurrence records [82]. Therefore, since the minimum number of records was 30

(cf. Table 1), only six independent predictors with Spearman’s pairwise correlation <0.8 [83]

and VIF< 4 (S1–S4 Figs and S5 and S6 Figs, respectively), and with the highest relative contri-

bution per model extent and spatial scale combination in preliminary tests, were considered in

model calibration (i.e. those listed in Table 3). The final set of predictors was defined consider-

ing both the results of the statistical tests and, when two or more predictors were highly corre-

lated, only the one representing a more direct determinant of the ecology and distribution of

the species was kept, based on expert judgement and scientific literature.
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Modelling setup. We established three groups of models representing the effects of the

three sets of predictors described above (climate, land-cover, and EFAs) on the distribution of

the two test species (Table 4). Additionally, a combination of predictors related to climate and

landscape composition/configuration was used in a fourth set of models, using the same pre-

dictors used for the CLI and LC models.

To analyse and rank model performance, we conducted a modelling workflow testing the

effect of the three focal drivers of model performance (predictor set, spatial extent, and spatial

resolution), and for the narrow-ranged and the wide-range species. Thus, we compared model

performance in three sets of tests: 1) different predictor sets (CLI, LC, CLI+LC, EFAs), at same

pixel size and spatial extent; 2) different pixel sizes (1 km2 vs. 5 km2), for the same spatial extent

and with the same predictor set; and 3) different spatial extents (IP vs. NW vs. NP), at the same

pixel size and for the same predictor set.

Model fitting and evaluation. We fitted Species Distribution Models (SDMs) and

obtained spatial projections under an ensemble-forecasting framework implemented on bio-
mod2 package ([91]; available at http://cran.r-project.org/web/packages/biomod2/index.html).

The ensemble-forecasting framework has been established as a powerful tool for analysing spe-

cies-environmental relationships [92]. Models were fitted using all 10 modelling techniques

available in biomod2, for each set of models and using default parameters. Since algorithms

require the input of (pseudo)absences [93], and since true-absence data were not available for

the target species, pseudo-absences were generated by randomly assigning unoccupied grid

cells each the study region, with the following constraints: 1) generating the same number of

pseudo-absences as of presences to avoid potential bias caused by different levels of prevalence

in the presence/absence datasets [94]; and 2) defining a minimum distance between pseudo-

absences, corresponding with each grain size (5 km and 1 km), and without overlapping with

presences [95], to avoid spatial autocorrelation and in order to cover the different ecological

conditions in each study area. Uncertainty was controlled by generating 30 different sets of

pseudo-absences for each species and running the whole process 30 times, resulting in 9300

individual models produced for each combination of species, spatial extent and grain size.

Model accuracy was were measured as the Area Under the Curve (AUC) of receiver opera-

tor characteristic (ROC) curves. AUC is a robust threshold-independent measure of a model’s

ability to discriminate presence from absence [79,96], ranging between 0 and 1 (measures

below 0.7 were considered poor, 0.7–0.9 moderate, and > 0.9 good). The resulting models

Table 4. Rationale for the four groups of models included in the modelling setup.

Datasets Rationale References

CLI Climatic gradients (CLI) usually govern species distributions at global to regional scales.

However, climate may not affect equally the distribution of narrow-ranged and wide-

ranged species.

[20]

[84]

[69]

LC Land-cover (LC) mainly affects species occupancy patterns at the landscape and local scales.

Landscape composition and structure have been used for predicting species diversity as well

as the distribution and abundance of individual species.

[85]

[25]

[86]

CLI

+ LC

Climate (CLI) and land-cover (LC) are known to influence species distributions at various

scales, therefore models combining climate and land-cover predictors are due to provide

robust predictions of those distributions. Climate and land-cover are also drivers of EFAs,

and so CLI+LC models are assumed to approach, from a structural perspective, the

potential effects of EFAs on those distributions.

[87]

[88]

[89]

EFAs The annual metrics derived from EVI time-series are closely related to the dynamics of

ecosystem carbon gains, and therefore, to net primary productivity. These functional

attributes (EFAs) allow capturing most of the variability in phenology, seasonality and

productivity, holding high predictive power over species distributions at the local and

regional scales.

[38]

[90]

[40]

https://doi.org/10.1371/journal.pone.0199292.t004
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with the highest AUC median, among those satisfying the condition� 0.7 [97], were selected.

We used AUC median values for excluding models with lower scores, for the binary transfor-

mations of model probability predictions, and for building the ensemble predictions. Differ-

ences between the mean predictive ability of the best models in terms of AUC were also

compared using the Tukey’s HSD (honest significant difference). Additionally, we used the

True Skill Statistic (TSS) median values of the ensemble models as a threshold-dependent mea-

sure of model accuracy [98]. Since TSS ranges from 0 or less (agreement no better than ran-

dom classification) to 1 (perfect agreement between predictions and observations), we

considered TSS values< 0.4 poor, 0.4–0.8 useful, and> 0.8 good to excellent. Model evalua-

tion was based on cross-validation, with the species datasets divided into 80% of the records

for model calibration and 20% for model evaluation. To transform predicted probabilities into

suitable/unsuitable areas, we used a threshold minimizing the straight-line distance between

the receiver operating curve plot and the upper-left corner of the unit square [99].

Comparison of best predictors and spatial projections across sets of models

The importance of each predictor in the final ensemble models, ranging between 0 (no impor-

tance) and 1 (high importance), was computed as described in [92]. We compared the relative

importance of predictors across the four sets of models (CLI, LC, CLI+LC, and EFAs). Only

predictors with importance > 0.1 were considered. To facilitate ecological interpretability of

the effect of the most relevant predictors, we analysed the response curve (maximum sensitiv-

ity range and sense of the slope) of the best predictor (the one with the highest importance) in

EFA-based models and in the best models based on CLI and/or LC predictors.

To assess the usefulness of EFA-based SDMs in reporting the conservation status of pro-

tected species (e.g. Article 17 HD), we compared the spatial projections of habitat suitability

derived from EFA-based models and from CLI/LC-based models. For pairwise comparisons

between projections obtained at each combination of spatial extent (IP, NW and NP) and spa-

tial resolution (1km and 5km) for each species, were used the improved fuzzy Kappa algorithm

implemented in the Map Comparison Kit version 3.2.3 [100] for categorical maps. This algo-

rithm expresses the mean agreement between two maps, compared to the expected agreement

from random relocation of all grid squares in both maps, ranging between 0 (totally different

maps) and 1 (identical maps). It considers the fuzziness of the location, for near ‘grid square-

by-grid square’ agreement, while also accounting for autocorrelation in the changes amongst

maps [100,101]. We also tested the agreement between continuous prediction maps using the

Spearman’s correlation coefficient and the Moran’s I index for spatial autocorrelation.

All analyses were performed in the R software version 3.4.1 [102] available at CRAN (http://

cran.r-project.org/). QGIS version 2.18.11 [103] and ArcGIS version 10.2 [104] were used for

managing and representing spatial data and projections.

Results

Comparison of model performance across species and scales

Overall, models exhibited very good performance as measured by AUCmedian (Fig 3). CLI-

based models, individually or in combination with LC, showed the highest values in all cases

(from 0.882±0.059 to 0.995±0.083), though EFA-based models held only slightly lower perfor-

mance (from 0.881±0.072 to 0.983±0.125) (Table 5). TSSmedian values were above 0.6 in all

cases, ranging from 0.66±0.03 to 0.97±0.17 (S7 and S8 Figs).

The ensemble AUCmedian of EFA-based models for the narrow-ranged species (Iris boissieri)
was always >0.9 in two of the four scale combinations (Table 5, Fig 3). IP-5km and NW-1km

were the best scale combinations for this species (AUCmedian of 0.983±0.125 and 0.971±0.08,
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respectively). In both cases, performance of EFA-based model performance was statictically

comparable to that of CLI- and CLI+LC-based models. For the other two combinations, NW-

Fig 3. Comparison of relative performance of the Area Under the Curve (AUC) between traditional (climate and land-cover)-based and satellite-derived

Ecosystem Functional Attribute (EFA)-based models across all scale combinations and test species. Performance of individual models (boxplots) showing the

AUCmedian, two hinges (first and third quartiles), and two whiskers of each model filtered at AUC�0.7 (empty-triangle signs represent the AUCmean). Filled-circle

dots and crosses represent the AUCmedian and the TSSmedian, respectively, of the ensemble models. Different letters indicate significant differences among models

(multiple comparisons of means were performed using Tukey’s test at the 0.05 significance level).

https://doi.org/10.1371/journal.pone.0199292.g003
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5km and NP-1km, AUCmedian values of EFA-based models were also above 0.9 (0.955±0.118

and 0.902±0.104, respectively) (Fig 3). LC-based models held the worst performances in all

scale combinations for Iris boissieri.
The ensemble AUCmedian of EFA-based models for Taxus baccata was lower than for I. bois-

sieri, and ranged from 0.8 (IP-5km and NW-5km) to 0.9 (NW-1km and NP-1km) (Fig 3). The

best scale combinations of EFA-based models for this wide-ranged species were for the NW

and NP extents at 1km resolution (AUCmedian of 0.964±0.072 and 0.931±0.115, respectively,

statistically comparable to CLI- and CLI+LC-based models; Table 5). The other two scale com-

binations (IP-5km and NW-5km) also held AUCmedian values for EFA-based models above 0.8

(Fig 3). LC-based models again held the worst performances in all scale combinations (Fig 3).

Predictor importance and response curves

The mean contribution achieved by each predictor (only those� 10%) for the ensemble mod-

els based on traditional (CLI and/or LC) predictors and on EFAs is summarized in Table 5

(see S9 and S10 Figs for predictor importance across all individual models and for each target

species). Overall, climate predictors (temperature and precipitation) held the highest impor-

tance at the several scale combinations, while predictors related to productivity and phenology

were the most important in EFA-based models.

Table 5. Summary table of performance of the best ensemble models based on traditional (climate -CLI- and/or land-cover -LC-) and on satellite-derived Ecosystem

Functional Attribute (EFAs), considering those individual models filtered at Area Under the Curve (AUC)�0.7. The AUCmedian±IQR (Inter Quartile Range) and the

top variables above a threshold of importance contribution (%>0.10) are showed per species, extent, and spatial resolution. See complete names of variables and extents in

Table 3.

Extent Spatial

resolution

Iris boissieri Taxus baccata
Model AUCmedian

(±IQR)

TSSmedian Top

variables

% variable

contribution

Model AUCmedian

(±IQR)

TSSmedian Top

variables

% variable

contribution

IP 5km CLI 0.995

±0.083

0.97±0.16 PpWM 0.67 CLI

+LC

0.882

±0.059

0.66±0.09 agric 0.52

PpDM 0.13 TmDQ 0.28

EFAs 0.983

±0.125

0.9±0.25 EVIdmxs 0.51 EFAs 0.881

±0.072

0.7±0.1 LSTmn 0.47

LSTsd 0.31 LSTsd 0.26

ALBmx 0.17 EVIdmxs 0.11

NW 5km CLI 0.968

±0.125

0.89±0.25 TmDQ 0.71 CLI 0.929

±0.113

0.74±0.17 TmDQ 0.67

PS 0.13 PpDM 0.12

PpWM 0.11 PS 0.11

EFAs 0.955

±0.118

0.78±0.17 EVImn 0.55 EFAs 0.927

±0.125

0.74±0.2 EVImn 0.64

EVIdmxs 0.16 EVIdmxs 0.29

EVImx 0.11

1km CLI 0.986

±0.084

0.88±0.11 TmDQ 0.79 CLI 0.983

±0.074

0.89±0.15 TmDQ 0.53

TAR 0.14

PpWM 0.16 PS 0.12

TmWQ 0.1

EFAs 0.971±0.08 0.84±0.16 EVImn 0.54 EFAs 0.964

±0.072

0.84±0.11 EVImn 0.62

EVImx 0.17 LSTsd 0.28

LSTmn 0.12

NP 1km CLI

+LC

0.909

±0.104

0.7±0.29 TmDQ 0.69 CLI 0.963±0.13 0.82±0.2 TmWQ 0.67

agric 0.27 PpWM 0.19

PS 0.11

EFAs 0.902

±0.104

0.68±0.25 EVImn 0.49 EFAs 0.931

±0.115

0.74±0.2 EVImx 0.52

LSTmn 0.21 EVImn 0.4

https://doi.org/10.1371/journal.pone.0199292.t005
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For Iris boissieri, Precipitation of Wettest Month (PpWM) was the most important predic-

tor in CLI/LC-based models at the largest and coarsest scale (IP-5km) (Table 5), whereas sum-

mer temperatures (TmDQ) held high predictive power at more local and finer scales (NW-

5km, NW-1km and NP1-km). Land-cover (namely ‘agric’) was only important at the most

local and finest scale combination (NP1-km). In EFA-based models, EVIdmxs (summerness

of the growing season peak) was among the most important predictors at the largest and coars-

est scales (IP-5km and NW-5km) (Table 5), while EVImn (minimum productivity) was an

important predictor at more local and finer scales (NW-5km, NW-1km and NP1-km). Species

response curves to the most important predictors (Fig 4) revealed that I. boissieri is distributed

in areas of high precipitation and cool summer temperatures. From and ecosystem functioning

viewpoint, the species occurs in areas where the growing season peak occurs in summer and

with low productivity during the winter.

For Taxus baccata, agricultural land-use (‘agric’) was the most important predictor in CLI/

LC-based models at the largest and coarsest scale (IP-5km) (Table 5). However, climate was

the main driver of the species distribution at more local and finer scales: summer temperatures

(TmDQ) at regional and finer scales (NW-5km and NW-1km) and while winter temperatures

(TmWQ) at the most local and finest scale combination (NP-1km). In EFA-based models,

LSTmn, representing surface temperatures during the coldest month, was the most important

predictor at the largest and coarsest scale (IP-5km) (Table 5), whereas EVI, our surrogate for

productivity dynamics, was more informative at more local and finer scales. Thus, EVImn

(minimum productivity) was an important predictor at several scale combinations, while

EVImx (maximum productivity) was especially important at the most local and finest scale

(NP-1km). Species response curves to the most important predictors (Fig 5) revealed that the

Fig 4. Response curves of predicted habitat suitability for Iris boissieri to the most important predictors. Response

curves for predictors with the highest importance in traditional (climate and land-cover)-based (left) and Ecosystem

Functional Attribute (EFA)-based (right) ensemble models for Iris boissieri at all combinations of spatial extents and

resolutions.

https://doi.org/10.1371/journal.pone.0199292.g004
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occurrence of T. baccata is more likely in areas with cool temperatures and under lower agri-

cultural management, such as in remote mountain areas. Response curves to the most impor-

tant EFA predictors confirmed that the species is mainly distributed in areas of low surface

temperatures and with low productivity during the winter.

Spatial projections of habitat suitability

Overall, similarity of spatial projections between CLI/LC-based and EFA-based SDMs for the

narrow-ranged species (Iris boissieri) was highest at more local and finer scales (Table 6; Fig 6),

while the greater similarities for the wide-ranged species (Taxus baccata) were found at larger

and coarser scales (Table 7; Fig 7). Spatial autocorrelation (Moran’ I) of predicted habitat suit-

ability was generally higher in projections from CLI/LC-based models than from EFA-based

models (for the same species at scale combination) (Tables 6 and 7). In general, habitat suit-

ability projections from EFA-based models were more conservative in terms of predicted suit-

able pixels (see S11 and S12 Figs).

For Iris boissieri, the most significant correlation among continuous maps of habitat suit-

ability was found between the combination of CLI+LC and LC-based models, and EFA-based

models (r = 0.64; P< 0.001), at local and finer scale combination (NP1-km). This agreement

was supported by the improved fuzzy Kappa values between these two maps (Fuzzy Kappa =

0.666) (Table 6). The spatial autocorrelation (Moran’ I) of the habitat suitability maps was pos-

itive for both CLI/LC-based and EFA-based models at all scale combinations. In terms of pre-

dicted area, EFA-based models predicted more partial suitable area than CLI-based models at

the largest and coarsest scale combination (IP-5km), while CLI and the combination of CLI

+LC gained more predicted power at more local, coarse and finer scale combinations (NW-

Fig 5. Response curves of predicted habitat suitability for Taxus baccata to the most important predictors.

Response curves for predictors with the highest importance in traditional (climate and land-cover)-based (left) and

Ecosystem Functional Attribute (EFA)-based (right) ensemble models for Taxus baccata at all combinations of spatial

extents and resolutions.

https://doi.org/10.1371/journal.pone.0199292.g005
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5km, NW-1km and NP-1km) (Fig 6). The greatest overlaid area (48.55%) between the combi-

nation of CLI and LC was found at local and finer scale combination (NP-1km).

For Taxus baccata, the most significant correlation among continuous maps of habitat suit-

ability was found between the combination of CLI+LC-based and EFA-based models (r = 0.76;

P< 0.001), at larger and coarser scale combination (IP-5km). This agreement was supported

by the fuzzy Kappa values between these two maps (Fuzzy Kappa = 0.799) (Table 7). The spa-

tial autocorrelation (Moran’ I) of the habitat suitability maps was positive for both CLI/LC-

based and EFA-based models at all scale combinations. In terms of predicted area, EFA-based

models predicted slightly less partial suitable area than combined CLI+LC-based models at the

largest and coarsest scale combination (IP-5km), while gained more predicted power at more

local, coarser and finer scale combinations (NW-5km and NW-1km) (Fig 7). The partial pre-

dictions of the CLI-based models were higher than EFA-based predictions at local and finer

scale combination (NP-1km). The greatest overlaid area (62.54%) between the combination of

CLI+LC-based and EFA-based projections was found at regional and larger scale combination

(IP-5km).

Discussion

Traditionally, multi-scale approaches to examine scale-dependent effects on species response

to environmental heterogeneity have focused on classical predictors such as climate and land-

cover [46,67], but far less on ecosystem functional variables or remote sensing data [66]. Build-

ing on previous studies that explored the predictive value of satellite-derived ecosystem func-

tional attributes (EFAs) [35], here we tested additional variables such as Albedo and Land

Surface Temperature. We also tested whether EFA-based SDMs performance was scale depen-

dent. We also tested whether the performance of EFA-based SDMs was scale-dependent, and

compared it with climate and land-cover predictors at several spatial resolutions and extents,

for a narrow-ranged species (Iris boissieri) and for a wide-ranged species (Taxus baccata).

Overall, our results showed that EFAs perform as good as the combination of climate plus

land-cover as predictors in SDMs. For both groups of predictors, model performance and the

most important predictors showed some variation across scales and species. The EFA-derived

habitat suitability maps were consistent with those derived from climate plus land-cover, but

with the advantage that EFAs provide ready-to-use and easily updatable information on

Table 6. Comparison of spatial projections from traditional (CLI/LC-based) models and from Ecosystem Functional Attribute (EFA-based) models for Iris boissieri
at all scale combinations. The proportion of predicted suitable area is shown in brackets. IP: Iberian Peninsula; NW: Northwest IP; NP: Peneda-Gerês National Park.

Extent Spatial

resolution

Iris boissieri
Model Fuzzy Kappa Spearman’s ρ Moran’s I Area (km2)

Partial Overlaid Total

IP 5km CLI 0.561 0.43��� 0.75 4425(14.84%) 7925(26.6%) 29800

EFAs 0.56 17450(58.55%)

NW 5km CLI 0.628 0.51��� 0.66 3225(40.31%) 2900(36.25%) 8000

EFAs 0.55 1875(23.43%)

1km CLI 0.543 0.41��� 0.85 2483(42.62%) 1680(28.83%) 5826

EFAs 0.63 1663(28.54%)

NP 1km CLI+LC 0.666 0.64��� 0.63 89(32.24%) 134(48.55%) 276

EFAs 0.57 53(19.2%)

Note

��� means significance level at p < 0.001

https://doi.org/10.1371/journal.pone.0199292.t006
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Fig 6. Spatial projections of habitat suitability for Iris boissieri derived from Species Distribution Models (SDMs) based on traditional predictors (climate

and land-cover) and on satellite-derived ecosystem functional attributes (EFAs). Overlay maps of current potential presence-absence distributions predicted

using an ensemble modelling approach per combination of spatial extent (IP, NW and NP) and resolution (1km and 5km) for Iris boissieri. IP: Iberian

Peninsula; NW: Northwest IP; NP: Peneda-Gerês National Park.

https://doi.org/10.1371/journal.pone.0199292.g006
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suitable habitat conditions. Altogether, our results reinforce the use of satellite-derived EFAs

related to the carbon cycle and the energy and radiation balance as meaningful Essential Biodi-

versity Variables (EBVs) of Ecosystem Function and for reporting species conservation status

[35].

Model performance and scale-dependence

For all scale combinations under analysis, EFA-based ensemble models showed almost the

same performance (0.019% lower on average) than models based on climate or on a combi-

nation of climate and land-cover. Such small difference in performance (see Table 5, Fig 3)

confirm that satellite-derived EFAs perform similarly to the combination of interpolated cli-

matology grids plus land-cover data across scales and species ranges (hypothesis H1). Satellite

descriptors of ecosystem functioning not only showed a similar performance to climate predic-

tors in SDMs (as in [35,105]), but also to the combination of climate and land-cover, support-

ing the idea that EFAs capture an integrative response to multiple environmental drivers

[25,39].

We found a relatively small scale-dependence of the predictive ability of satellite-derived

EFAs (hypothesis H2), with model performance increasing towards higher spatial resolutions

(NW-5km vs. NW-1km), larger extents of analysis (IP vs. NW vs. NP), and smaller species

range (Iris vs. Taxus). Consistently with previous studies, our results also showed that the per-

formance of SDMs based on traditional predictors increases at finer spatial resolutions [106]

and with smaller number of records [81,107]. Such differences in performance agree with the

importance of combining climate (a major species driver at the regional scale) and land-cover

to achieve robust predictions at the local scale (e.g. [6]). In addition, performance of EFA-

based SDMs was better for the narrowly distributed than for the widely distributed species at

larger and coarser scales (as observed in [35] at the same spatial resolution and extent).

Satellite-derived variables are known to improve SDMs performance compared to other

predictors [25], at various spatial extents and resolutions [108]. Our results show that the

explanatory power of EFAs, compared to that of traditional predictors, differed according to

the spatial extent, spatial resolution, and species distribution range (hypothesis H3). For our

narrowly distributed species, the similarity in average performance between models based on

Table 7. Comparison of spatial projections from traditional (CLI and/or LC-based) models and from Ecosystem Functional Attribute (EFA-based) models for

Taxus baccata at all scale combinations. The proportion of predicted suitable area is shown in brackets. IP: Iberian Peninsula; NW: Northwest IP; NP: Peneda-Gerês

National Park.

Extent Spatial

resolution

Taxus baccata
Model Fuzzy Kappa Spearman’s ρ Moran’s I Area (km2)

Partial Overlaid Total

IP 5km CLI+LC 0.799 0.76��� 0.74 33850(20.21%) 104725(62.54%) 167450

EFAs 0.78 28875(17.24%)

NW 5km CLI 0.588 0.63��� 0.74 2775(17.29%) 7550(47.04%) 16050

EFAs 0.61 5725(35.67%)

1km CLI 0.659 0.48��� 0.76 930(20.12%) 1731(37.46%) 4620

EFAs 0.61 1959(42.4%)

NP 1km CLI 0.539 0.66��� 0.75 92(36.07%) 108(42.35%) 255

EFAs 0.61 55(21.57%)

Note

��� means significance level at p < 0.001

https://doi.org/10.1371/journal.pone.0199292.t007
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Fig 7. Spatial projections of habitat suitability for Taxus baccata derived from Species Distribution Models (SDMs) based on traditional predictors

(climate and land-cover) and on satellite-derived ecosystem functional attributes (EFAs). Overlay maps of current potential presence-absence distributions

predicted using an ensemble modelling approach per combination of spatial extent (IP, NW and NP) and resolution (1km and 5km) for Taxus baccata. IP:

Iberian Peninsula; NW: Northwest IP; NP: Peneda-Gerês National Park.

https://doi.org/10.1371/journal.pone.0199292.g007
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EFAs, and the best models based on traditional predictors, increased from larger and coarser

scales (0.012% difference) to local and finer scales (0.007% difference). However, for the widely

distributed species, this similarity in average performance decreased from larger and coarser

scales (0.001% difference) to local and finer scales (0.03% difference).

Overall, our results confirmed the known predictive ability of the satellite-derived EFAs at

coarse resolutions [35], and expanded it to finer scales, even at the protected area level. This

provides a local scale refined prediction of species potential distribution and habitat suitability

that is closer to the scale required for management actions [6,109,110]. Such predictions could

be further improved thanks to the availability of EFAs at even finer spatial resolutions (e.g.,

MODIS at ~250 m, LANDSAT at ~30m or Sentinel-2A at ~10m) and higher temporal resolu-

tions (MODIS or the combination of LANDSAT plus Sentinel-2A), which is still a major con-

straint when using climate interpolated surfaces and land-cover data [35]. Furthermore, the

use of EFAs in SDMs allows the interpretation of the determinants of species distributions

from a functional perspective, considering features such as annual amount, seasonality and

phenology of carbon gains, land surface temperature, and albedo. As new satellite products

become available, EFAs could be expanded to other dimensions of ecosystem functioning such

as evapotranspiration, soil moisture, disturbance, etc. [37,39].

Still, in spite of the limitations of the interpolated climate data and low-resolution land-cover

data, models combining those predictors provided similar or slightly better performances than

EFA-based models across scales and species ranges. Therefore, we assume that using high-reso-

lution and updated spatial climate data and recent land-cover classifications derived from

remote sensing, as well as ancillary edaphic and geological data, could further improve their per-

formance [32,34]. For instance, the fusion of radar and optical remote sensing data generally

leads to increased accuracy of the land-cover maps [111]. The synergy between high-resolution

radar, optical (e.g. Sentinel-1 and Sentinel-2) and LIDAR data could also be used to inform on

important aspects of habitat structure and function such as structural complexity of the canopy

[112], or soil moisture mapping [113], which could help to improve model accuracy. Further-

more, the continuous updating of current climatic and land-cover datasets would complement

the information provided by the integrative response of satellite-derived ecosystem functional

variables (EFAs) [32,114]. This combination would improve our ability to forecast [35] the

effects of environmental change on ecosystem function and structure, to monitor biodiversity

hotspots, or to model habitat quality at regional and local scales [34,105].

The role of EFAs in capturing both climate and land-cover effects in SDMs

In this study we also aimed to identify the most relevant variables in the models based on EFAs

or on climate/land-cover predictors, comparing those variables across scales and species. As

often found (e.g. [6,69,85,115]), our results showed that climate was the main driver of species

distribution at all combinations of spatial extent, spatial resolution and target species, while

land-cover achieved good performance only in combination with climate. Overall, tempera-

ture and precipitation provided the highest contributions for models based on traditional

predictors across scales. We observed an increasing dominance of the temperature over pre-

cipitation variables from regional and coarser to local and finer scales in determining the spe-

cies’ climatic range. Predictors related to productivity and phenology were the most important

in EFA-based models (e.g. [24]), suggesting that remotely-sensed descriptors of the carbon

cycle were the most capable of capturing relevant aspects of ecosystem functioning [35,50,116]

for both narrowly and widely distributed species.

Our results revealed that, from regional and coarser scales to local and finer scales, our nar-

row-ranged species (Iris boissieri) tends to occur in areas characterized by cool temperatures
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and high precipitation during the summer season, which translates into a maximum primary

productivity in summer and minimum in winter (see Table 5; Fig 4). These results match with

our observations that the species is most often found at high elevations, in sparsely vegetated

landscape mosaics dominated by scrub, and grasslands. In addition, the aerial part disappears

as the summer advances, and only the underground part (the bulb) remains in a latent state

during the less favorable season, taking advantage of local deposits of organic matter in the

low, fire-prone scrubland typical of upper elevations [55]. The greatest threat in the mid-long

term to this rare species seems to be landscape change resulting from the abandonment of tra-

ditional pastoral systems, which allows vegetation succession and reduces the area of suitable

habitat [59,117].

Similarly, despite the influence of agroforestry management on habitat suitability of Taxus
baccata at broader and coarser scales, climate (particularly temperature over precipitation)

and productivity gained importance at more local and finer scales (see Table 5; Fig 5). In that

sense, the most suitable areas to find this species could be characterized by non-cropped

mountainous areas with cool summers, and cold and low productive winters, with a combina-

tion of open deciduous woodlands and tall scrub. Taxus baccata can form dense continuous

patches in most of Europe, but in its southern limit (Mediterranean mountains), yew occurs as

small patches or isolated trees in deciduous woods dominated by other species (HD habitat

9580� Mediterranean Taxus baccata woods), therefore contributing to forest mosaic diversity

[60,62–64]. In the Iberian Peninsula, Taxus baccata thrives better in mixed and coniferous for-

ests, mostly on limestone substrates and often occupying rocky cliffs and slopes [60]. However,

on acid soils, the species competes worse under canopy and usually occurs in the form of small

patches or isolated trees, as we observed in our focal National Park. Despite Mediterranean

yew woods are protected under the HD, there are evident signs of regression in south-western

Europe, mainly caused by changes in land-use and fire regimes [62].

Spatial consistency of habitat suitability maps

To support the incorporation of EFA-based SDMs in reporting the conservation status of pro-

tected species (e.g. [118]), we also evaluated the spatial consistency of habitat suitability maps

derived from models based on climatic and land-cover predictors and from models based on

EFAs. The highest spatial consistency among maps of predicted habitat suitability was found

between models based on climate plus land-cover and models based on EFAs, both for the nar-

rowly and the widely distributed species. The pairwise comparisons between prediction maps

showed that similarity was greater at more local and finer scales for the narrowly distributed

species (see Table 6), while for the widely distributed species similarity was greater at larger

and coarser scales (see Table 7).

Overall, projections from EFA-based models were more conservative in terms of predicted

suitable area than those from models based on traditional predictors (see Figs 6 and 7). In

addition, the spatial autocorrelation of predictions was lower in EFA-based models, probably

due to the decoupling of ecosystem functioning from climate with increasing human land-use

[119]. While climate factors usually describe more homogeneous and therefore connected

areas at coarse scales, EFAs provided a response combining climate and landscape conditions

at more local scales. EFA-based models even predict more fragmented areas, and therefore

with less spatial correlation, than structural or compositional predictors [42,50]. This EFA-

based response could be related to the dominant vegetation type, since areas covered by scrubs,

which are characterized by high heterogeneity and diversity of species, show higher spatial var-

iability and lower spatial autocorrelation than forest areas, usually more homogeneous in

terms of species [119]. In this sense, the multi-scale analysis of the spatiotemporal dynamics of
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vegetation using satellite-derived EFAs could provide early-warnings of changes in habitat

suitability beyond assessments based on climate interpolated surfaces or structural metrics

such as those derived from land-cover maps [25].

In summary, our results confirm the spatial consistency of habitat suitability maps derived

from EFAs-based models with those derived from models based on climate plus land-cover, con-

firming these annual descriptors of ecosystem functioning as useful SDM predictors for predicting

and monitoring the habitat suitability for threatened species with different distribution ranges.

Implications for assessment, monitoring and reporting

Complying with the legal obligations of EU member-states under Article 17th of the Habitats

Directive [53] requires providing extensive data on relevant parameters or indicators (e.g.

range, number and dimension of populations, suitable habitat and future prospects) to report

on the conservation status of species and habitats [118]. This assessment is often done at

regional and coarse scales. However, for planning effective management actions on the

ground, conservation priorities must be established at various scales [120–122]. Identifying

local conservation priorities requires high-resolution data, not only concerning the distribu-

tion of species and habitats, but also documenting the environmental factors involved. How-

ever, these are often unavailable or are expensive to collect in situ. Most of these drawbacks

can be mitigated thanks to remote sensing data, which have showed high potential for predict-

ing and monitoring species distributions and habitat suitability at different scales [25,26,30].

Standard scenarios of biologically meaningful variables derived from remote sensing for

projecting SDMs into the future, or for analyses of past dynamics, are currently still not avail-

able, but efforts are being developed by the scientific community towards the development of

these products [123]. Several studies e.g. [35,50,110,116], and our results, have confirmed that

remotely sensed variables related to ecosystem functioning (e.g. EFAs) can be useful predictors

for modelling protected species distribution and habitat suitability. Satellite-derived EFAs hold

the advantage of capturing similar environmental dynamics as traditional predictors (climate

and landscape structure and composition), but incorporating further functional information

[37,45]. Nevertheless, to capture early evidences of changes in vegetation dynamics that affect

habitat suitability, analyses at different spatial and temporal levels of detail are required [122].

With our multi-scale modelling framework, tested on two contrasting species of conservation

concern [53], we confirmed the potential of satellite-derived ecosystem functional variables as

useful predictors for developing robust SDMs and monitoring habitat suitability predictions

across scales. In this sense, multi-scale approaches (as implemented in this study), combined

with long-term monitoring programs that incorporate high-spatial and temporal resolution

data (e.g. Sentinel-2), may support broad scale habitat quality assessment for whole landscapes

or regions, and at fine scales for individual protected areas. Since effective conservation of vul-

nerable and/or rare species requires an accurate identification of habitat suitability patterns

and factors [109], we encourage the use of satellite-derived EFAs as a cost-effective source of

standardized and repeatable measurements in upcoming biodiversity monitoring and report-

ing schemes. Moreover, our proposed multi-scale framework will be valuable for conservation

managers to improve decision-making processes and for guiding conservation actions towards

a more efficient and sustainable management.

In conclusion, we would highlight the following three major reasons supporting the use of

Ecosystem Functional Attribute (EFAs) instead of (or besides) traditional climate and land

cover variables: (1) EFAs are descriptors of ecosystem processes that may closely affect species

distributions, while capturing other effects besides climate (e.g. those related to habitat fea-

tures); (2) satellite-based predictors can nowadays be computed from imagery available at high
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frequencies and several spatial resolutions (to match the scale of the relevant processes in each

study); and (3) EFA-based models have been shown to anticipate species’ responses to climate

change scenarios. Due to these and other advantages, EFA-based models hold high potential

for adaptive management of species, habitats and protected areas facing global change, even if

they do not significantly outperform models based on traditional climate and land cover pre-

dictors under particular modelling setups.

Supporting information

S1 Dataset. Iris boissieri presence data at NW extent and 1km cell size, and joined values

for each selected predictor to each occurrence data.

(CSV)

S2 Dataset. Taxus baccata presence data at NW extent and 1km cell size, and joined values

for each selected predictor to each occurrence data.

(CSV)

S1 Fig. Correlation matrix for predictor variables used in model fitting in the Peneda-

Gerês National Park (NP) extent and 1km cell size combinations for Iris boissieri. Legend.

Spearman’s correlation matrix for all the variables used in model fitting (Note: the lowest abso-

lute pairwise-correlation values were highlighted in green).

(TIF)

S2 Fig. Correlation matrix for predictor variables used in model fitting in the Peneda-

Gerês National Park (NP) extent and 1km cell size combinations for Taxus baccata. Leg-

end. Spearman’s correlation matrix for all the variables used in model fitting (Note: the lowest

absolute pairwise-correlation values were highlighted in green).

(TIF)

S3 Fig. Correlation matrix for predictor variables used in model fitting in the North-west-

ern Iberian Peninsula (NW) extent and 1km cell size combinations for Iris boissieri. Leg-

end. Spearman’s correlation matrix for all the variables used in model fitting (Note: the lowest

absolute pairwise-correlation values were highlighted in green).

(TIF)

S4 Fig. Correlation matrix for predictor variables used in model fitting in the North-west-

ern Iberian Peninsula (NW) extent and 1km cell size combinations for Taxus baccata. Leg-

end. Spearman’s correlation matrix for all the variables used in model fitting (Note: the lowest

absolute pairwise-correlation values were highlighted in green).

(TIF)

S5 Fig. Multicollinearity test of predictor variables used in model fitting Peneda-Gerês

National Park (NP-1km) for Iris boissieri (Ib) and Taxus baccata (Tb), by calculating the

Variance Inflation Factors (VIF) as implemented in the R package car using function vif().

Legend. For each predictor, the VIF shows the collinearity degree among at least one indepen-

dent variable with a combination of the other independent variables. In general, if VIF>5 is

indicative of multicollinearity problems (Ringle et al., 2015).

(TIF)

S6 Fig. Multicollinearity test of predictor variables used in model fitting North-western

Iberian Peninsula (NW-1km) for Iris boissieri (Ib) and Taxus baccata (Tb), by calculating

the Variance Inflation Factors (VIF) as implemented in the R package car using function

vif(). Legend. For each predictor, the VIF shows the collinearity degree among at least one
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independent variable with a combination of the other independent variables. In general, if VIF

>5 is indicative of multicollinearity problems (Ringle et al., 2015).

(TIF)

S7 Fig. Model performance based on TSS (True Skills Statistics) for different extent (IP:

Iberian Peninsula, NW: North-western IP and NP: Peneda-Gerês National Park) and spa-

tial resolution (1km and 5km) combinations for Iris boissieri and Taxus baccata. Legend.

Performance of the individual models (boxplots) showing the TSSmedian, two hinges (first and

third quartiles), and two whiskers of each model filtered at TSS�0.2 (empty-triangle signs rep-

resent the TSSmean). Filled-circle dots represent the TSSmedian of the ensemble models.

(TIF)

S8 Fig. Regression models among the median values of the Area Under the Curve (AUC) and

the True Skills Statistics (TSS) of the ensemble models for Iris boissieri and Taxus baccata. Leg-

end. Regression analysis among the AUCmedian and TSSmedian values for the ensemble models con-

sidering all extent (IP: Iberian Peninsula, NW: North-western IP and NP: Peneda-Gerês National

Park) and spatial resolution (1km and 5km) combinations for Iris boissieri and Taxus baccata.

(TIF)

S9 Fig. Variables importance for the best traditional (climate and land-cover)-based and

satellite-derived Ecosystem Functional Attribute (EFA)-based models for Iris boissieri.
Legend. Mean ± standard deviation variable importance of each predictor considered for the

best-performed models (through all individual combinations of pseudoabsences, model runs

and individual algorithms) fitted for Iris boissieri at all extents and spatial resolutions.

(TIF)

S10 Fig. Variables importance for the best traditional (climate and land-cover)-based and

satellite-derived Ecosystem Functional Attribute (EFA)-based models for Taxus baccata.

Legend. Mean ± standard deviation variable importance of each predictor considered for the

best-performed models (through all individual combinations of pseudoabsences, model runs

and individual algorithms) fitted for Taxus baccata at all extents and spatial resolutions.

(TIF)

S11 Fig. Spatial projections for Iris boissieri. Legend. Presence-absence maps for Iris boissieri
from ensemble forecasting modelling calibrated by traditional predictors and satellite-derived

ecosystem functional attributes (EFAs).

(TIF)

S12 Fig. Spatial projections for Taxus baccata. Legend. Presence-absence maps for Taxus
baccata from ensemble forecasting modelling calibrated by traditional predictors and satellite-

derived ecosystem functional attributes (EFAs).

(TIF)
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Supervision: Domingo Alcaraz-Segura, João P. Honrado.

Validation: Salvador Arenas-Castro, João Gonçalves.
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