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A B S T R A C T

Geographic Object-based Image Analysis (GEOBIA) is increasingly used to process high-spatial resolution ima-
gery, with applications ranging from single species detection to habitat and land cover mapping. Image seg-
mentation plays a key role in GEOBIA workflows, allowing to partition images into homogenous and mutually
exclusive regions. Nonetheless, segmentation techniques require a robust parameterization to achieve the best
results. Frequently, inappropriate parameterization leads to sub-optimal results and difficulties in comparing
distinct methods.

Here, we present an approach based on Genetic Algorithms (GA) to optimize image segmentation parameters
by using the performance scores from object-based classification, thus allowing to assess the adequacy of a
segmented image in relation to the classification problem. This approach was implemented in a new R package
called SegOptim, in which several segmentation algorithms are interfaced, mostly from open-source software
(GRASS GIS, Orfeo Toolbox, RSGISLib, SAGA GIS, TerraLib), but also from proprietary software (ESRI ArcGIS).
SegOptim also provides access to several machine-learning classification algorithms currently available in R,
including Gradient Boosted Modelling, Support Vector Machines, and Random Forest.

We tested our approach using very-high to high spatial resolution images collected from an Unmanned Aerial
Vehicle (0.03 – 0.10 m), WorldView-2 (2 m), RapidEye (5 m) and Sentinel-2 (10 – 20 m) in six different test sites
located in northern Portugal with varying environmental conditions and for different purposes, including in-
vasive species detection and land cover mapping. The results highlight the added value of our novel comparison
of image segmentation and classification algorithms. Overall classification performances (assessed through
cross-validation with the Kappa index) ranged from 0.85 to 1.00. Pilot-tests show that our GA-based approach is
capable of providing sound results for optimizing the parameters of different segmentation algorithms, with
benefits for classification accuracy and for comparison across techniques. We also verified that no particular
combination of an image segmentation and a classification algorithm is suited for all the tasks/objectives.
Consequently, it is crucial to compare and optimize available methods to understand which one is more suited
for a certain objective.

Our approach allows a closer integration between the segmentation and classification stages, which is of high
importance for GEOBIA workflows. The results from our tests confirm that this integration has benefits for
comparing and optimizing both processes. We discuss some limitations of the SegOptim approach (and potential
solutions) as well as a future roadmap to expand its current functionalities.

1. Introduction

Geographic Object-based Image Analysis (GEOBIA) is a recent sub-

discipline of Geographic Information Science that, according to Hay
and Castilla (2008), is “(…) devoted to developing automated methods to
partition remote sensing imagery into meaningful image-objects, and
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assessing their characteristics through spatial, spectral and temporal scales,
so as to generate new geographic information (...)”. More specifically,
object-based analysis of Earth Observation (EO) data allows to describe
the imaged reality using spectral, textural, spatial, contextual and to-
pological features in a multi-scalar and integrated fashion (Lang, 2008).
GEOBIA benefitted from the availability of (very-)high spatial resolu-
tion imagery, from vast progresses in image segmentation as well as
software bridging image processing and GIS functionalities in an object-
based environment ready for exploration and analysis (Blaschke, 2010).

GEOBIA concepts and methods have been used in several contexts
and reported in a large and growing body of literature. Image seg-
mentation plays an important role in GEOBIA (Blaschke, 2010; Lang,
2008). Independently of the method used, segmentation provides the
elementary blocks used for object-based image analysis (Blaschke,
2010), interpretation, classification and modelling. Segmentation in-
volves the partitioning of an image into a set of jointly exhaustive and
mutually disjoint regions (a.k.a. segments, composed by multiple image
pixels), that are internally more homogeneous and similar, compared to
adjacent ones. Image segments are then related to geographic objects of
interest (e.g., forests, agricultural or urban areas) through some form of
object-based classification (Castilla and Hay, 2008). Image segments
are created on the basis of one or more homogeneity (and merging)
criteria in one or more dimensions of a feature space (Blaschke, 2010).
As such, these segments have additional information related to the
properties and moments of the distribution of spectral data from each
individual contained pixel as well as contextual, morphological and
spatial information (Blaschke, 2010; Hay and Castilla, 2008; van der
Werff and van der Meer, 2008). Image segments should be meaningful
in respect to a particular task and their properties should allow to
convert them into useful geographic objects. This is especially chal-
lenging because widely different segmentation results can be obtained
by varying parameter values of existing algorithms (Dragut et al., 2014;
Liu et al., 2012). Therefore, defining objective criteria is needed to
address this problem, allowing to identify which image segmentation
algorithms and parameterization may provide optimal solutions in each
case.

In order to better understand how image segmentation parameters
are typically defined by users, we performed a semi-systematic, sample-
based review of the current literature (see details in Supporting
Information – Appendix S1). We found that 44% of 72 randomly se-
lected papers (out of 1067 retrieved in our search) did not explicitly
mentioned how image segmentation parameters were defined or tuned
(Supp. Info. Appendix S1/Figure S1–1a). From publications that did
mentioned this, 28% corresponded to specific procedures, 19% used a
visual interpretation/trial-and-error approach and 9% used the ESP tool
(Dragut et al., 2014) available only for eCognition multi-resolution
segmentation (Baatz and Schape, 2000). Only very few examples (ca.
7%) explicitly integrated both image segmentation and classification
steps for tuning parameters.

Although several works did not state or used trial-and-error ap-
proaches for defining image segmentation parameters, there are rig-
orous alternatives to perform this task. For example, ESP is an auto-
matic tool for eCogniton® proprietary software capable of determining a
set of suitable ‘scale’ parameters for multi-resolution image segmenta-
tion (Dragut et al., 2014). This unsupervised approach uses changes in
local variance to detect scale transitions in spatial data. Other works
have employed a supervised approach to this problem, comparing a set
of reference objects with those obtained by image segmentation.
Clinton et al. (2010) proposed several discrepancy measures to assess
segmentation quality between sets based on area, location, or the
combination of both aspects. Based on this work, Liu et al. (2012) de-
vised a supervised discrepancy measure named Euclidean Distance 2
(ED2) to evaluate segmentation quality based on geometric and ar-
ithmetic similarity and used it to define the best parameters for seg-
mentation (Liu et al., 2012; Novelli et al., 2017). Räsänen et al. (2013)
compared several discrepancy measures for mapping boreal forests and

concluded that it is crucial to state the objectives of image segmentation
and that discrepancy evaluation measures should be used with care.
Moreover, some of the above methods are software or algorithm-spe-
cific (such as ESP tool) or focus on geometric, positional or areal si-
milarity between segments and reference data and thus, are not in-
tegrated with classification procedures.

In order to overcome some of these limitations and to generalize the
process of comparing different segmentation algorithms and optimizing
their parameters, we developed a solution that integrates both proces-
sing steps (segmentation and supervised classification) in a single and
unified workflow. Genetic Algorithms (GA) are then used to optimize
image segmentation parameter values in relation to the classification
problem. GA’s are broadly included in the class of evolutionary algo-
rithms and constitute a type of computational search method used to
find exact and approximate solutions to a given optimization problem
(Scrucca, 2013). GA’s are employed here due to their flexible and multi-
purpose nature as a stochastic search technique capable of solving op-
timization problems both for continuous and discrete functions, by
mimicking the biological principles of evolution and natural selection
(Haupt and Haupt, 2004; Scrucca, 2013).

Our approach, based on GA optimization, was implemented in a
new open-source R package named SegOptim which can be used to tune
image segmentation parameters in the context of supervised classifi-
cation of EO images. For assessing the proposed approach and toolkit
we devised a set of tests using high (10–20 m), very-high (2–5 m) and
‘ultra’-high (0.03-0.10 m) spatial resolution images, collected from
distinct EO platforms in six test sites in northern Portugal with different
environmental and landscape conditions, and in which image seg-
mentation was used for different purposes. SegOptim package is directed
towards users interested in applying, comparing and optimizing object-
based algorithms to image segmentation and classification of EO data.
We provide access to the package source code through a Bitbucket re-
pository: https://bitbucket.org/joao_goncalves/segoptim, and a tutorial
describing the package functionalities: https://segoptim.bitbucket.io/
docs/ (in prep).

2. Methods

2.1. The proposed optimization approach

2.1.1. Implementing the optimization approach in R
The R environment and language for statistical computing (R

Development Core Team, 2017) provided the computational environ-
ment to implement SegOptim – the R package implementing the opti-
mized GA-based approach to multi-technique image segmentation and
GEOBIA supervised classification.

R has been gaining more popularity among the Remote Sensing
(RS)/EO and GIS communities due to its ability to handle raster datasets
(raster package (Hijmans, 2016)) and (pre-)process EO data (packages
such as RStoolbox (Leutner and Horning, 2017), landsat (Goslee, 2011)
or satellite (Nauss et al., 2015)).

However, currently there is no R package providing image seg-
mentation functionalities specifically for EO data. That is partly due to
the inherent complexity of these algorithms and their implementations
as well as constraints imposed by the type, formats and size of the data
used. One way to circumvent this limitation, and the strategy adopted
here, is to use 3rd party software to perform the image segmentation
stage (Fig. 1). The segmented image, outputted by an algorithm, is then
loaded into R for further analysis. R is especially well tailored for
running image classification since it has a large number of available
algorithms for this purpose.

Using this architecture, R acts as an interface between 3rd party
programs (used for image segmentation), centralizing all data required
for performing classification and optimization.

SegOptim is capable of handling both single-class problems (defined
as a type of supervised classification problem with only one class with
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two mutually exclusive levels, e.g., species presence / absence, burned /
unburned, cut / uncut forest) as well as multi-class (defined as a type of
supervised classification problem with multiple, n≥2, classes).

2.1.2. Genetic Algorithms: fitness function definition
In GA computation, at a certain stage of evolution, a population is

composed by a number of individuals each representing a possible so-
lution to the problem. Individuals are composed by genes which control
the inheritance and passing of information between individuals. The
capacity of individuals to solve a certain problem is determined by the
fitness function and only the fittest individuals reproduce and pass their
genetic information to their offspring. At each generation, the GA
evolutionary strategy discards the less fit individuals (or solutions) and
new ones are generated by the reproduction of the fittest (Scrucca,
2013). This is accomplished by several genetic operators in two stages:
exploration and exploitation. The first aims at exploring the search space
and is performed by operators such as crossover (which forms new
offspring by combining parts of the genetic information from two
parent individuals) and mutation (which randomly alters the values of
genes in parents). Complementarily, exploitation, aims to reduce the
diversity in the populations and focus on higher quality solutions. For
this matter a selection strategy is employed thus allowing the fittest
individuals to persist (Rothlauf, 2011). The GA evolution process is
stopped if some convergence criteria is attained.

GA’s require the definition of a fitness function (also defined as ob-
jective or cost function) which provides a single score ranking the
“merit” of each solution and summarising how close it is to the estab-
lished set of goals. In SegOptim, the goal of the fitness function is to
improve/optimize image segmentation in order to maximize the the-
matic accuracy of the supervised classification based on a predefined
set of image inputs such as labelled train input data, a set of classifi-
cation features and finally, control parameters. To this purpose, GA is
responsible for iteratively optimizing the segmentation algorithm ar-
guments in order to improve classification accuracy (Box 1 and Fig. 2).

For evaluating the merit of each solution, SegOptim uses either 5-
fold, 10-fold or holdout cross-validation. Depending if the problem is
single- or multi-class, it is possible to calculate several classification
performance metrics that summarise the confusion matrix. For single-
class problems, the Area Under the Receiver Operating Curve (AUC),
Cohen Kappa, Peirce Skill score (or true-skill score; PSS) and the Gerrity
skill score (GSS) are available, while for multi-class, accuracy, Kappa,
PSS and GSS can be used. The user can also define his own fitness/

performance function, calculating any meaningful score from the con-
fusion matrix. For testing purposes, we selected Kappa as the fitness
value as it is a widely used metric that can be applied for both single-
and multi-class classification and accounts for the accuracy simply
obtained by chance (Kuhn and Johnson, 2013).

2.1.3. Genetic Algorithm parameterization and setup
Running GA requires the setup of several parameters responsible for

controlling the initial population and the exploration/exploitation
stages (Table 1).

Given the time required to generate a single solution, the para-
meters controlling GA were setup in a ‘conservative fashion’ meaning
that population size was relatively low (but enough to generate diverse
solutions in the exploration stage). This parameterization was suited to
find an approximate solution with a relatively small population size and
a relatively low number of iterations thus allowing to decrease com-
putation time and keep processes tractable. Parameters were set equal
across all tests to make comparisons meaningful and avoid differences
generated by different GA settings.

GA also requires the search space to be constrained and therefore
the user must define the minimum/maximum values of each image
segmentation parameter for each algorithm. This is critical to achieve
good results as well as to avoid parameter combinations that provide
less fit solutions and thus increase computing time (see details in Supp.
Info. – Appendix S2).

2.1.4. Image segmentation algorithms available in the package
SegOptim currently interfaces with six external state-of-the-art pro-

grams responsible for performing the image segmentation stage
(Table 2). From these, a total of seven image segmentation algorithms
are available. Four types of algorithms can be identified (based on si-
milar characteristics) albeit differences in their computational im-
plementations: (i) mean-shift (ESRI ArcGIS and Orfeo Toolbox)
(Comaniciu and Meer, 2002; Michel et al., 2015); (ii) region growing
and merging (GRASS GIS, SAGA GIS and TerraLib) (Adams and Bischof,
1994; Bechtel et al., 2008; Hojjatoleslami and Kittler, 1998; Tremeau
and Borel, 1997); (iii) Shepherd k-means iterative elimination (RSGI-
SLib) (Clewley et al., 2014); and, (iv) Multi-resolution image segmen-
tation (also in TerraLib) (Baatz and Schape, 2000).

2.1.5. Supervised classification algorithms
Currently, SegOptim package offers several machine-learning

Fig. 1. The architecture of the software package SegOptim.
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classification algorithms which can be used to perform GEOBIA clas-
sification stage, these are: (i) Gradient Boosted Regression and
Classification (GBM) available through gbm package (Ridgeway, 2017);
(ii) Random Forests (RF) accessible in R through randomForest package
(Liaw and Wiener, 2002); and (iii) Support Vector Machines (SVM)
available via e1071 package (Meyer et al., 2017). These techniques
(along with available segmentation methods) were used and compared
through a series of tests for several distinct sites and image classifica-
tion problems. The default parameterization for each method was used.

2.1.6. Input data
Briefly described, the SegOptim package relies on three basic data

inputs used to perform image segmentation and object-based classifi-
cation (Fig. 2). These are:

• Training data: a single-layer raster dataset containing user-labelled
samples for training a classifier;

• Segmentation features: a multi-layer raster dataset with features
used only for the segmentation stage (e.g., spectral bands);

• Classification features: a multi-layer raster dataset with features
used for classification (e.g., spectral data, band ratios, spectral ve-
getation indices, texture features, topographic data).

2.2. Testing the optimized approach

2.2.1. Input training data
Six test sites located in northern Portugal were used to test SegOptim

optimization approach, comprising three single-class and three multi-

class problems. These tests represent a diverse array of ecological ap-
plications, scales and domains (e.g., land use/cover mapping, habitat
conservation, invasive species) as well as of environmental conditions,
ranging from coastal, lowlands up to mountainous areas and different
levels of landscape heterogeneity (Table 3).

The first set (single-class tests; Table 3) targeted the detection of
invasive species associated to sand dune environments (Carpobrotus
spp.; E1) or forest areas (Acacia spp.; E3 and E5). In the second set
(multi-class tests; Table 3), we used SegOptim to improve segmentation
parametrization for producing maps of natural habitat types (E2;
Gonçalves et al. (2016)) or land use/cover maps (E4 and E6; the target
classes are listed in Supp. Info. – Appendix S3).

Regarding the collection and/or digitization of training data, for
test-sites E1 (sample size, n = 80) and E2 (n = 25) we followed a sys-
tematic sampling approach using a regular sampling grid to select
sample locations later used in the field to collect ground-truth data. In
test site E3 we used purposive sampling (n = 40) to locate the target
species in the field, complemented with locations digitized from
GoogleEarth imagery (Monteiro et al., 2017). In test site E4, we used a
systematic sampling approach (n = 271) for digitizing training loca-
tions based on GoogleEarth imagery. For test site E5 we followed a
purposive sampling scheme for locating patches of Acacia dealbata
(n= 108) complemented with a set of random samples for the species
absence digitized from GoogleEarth imagery. In test site E6 we used a
stratified random sampling approach with strata defined through
clustering of several layers related to topography, soils and other da-
tasets (Bastos et al., 2016) for collecting training samples (n = 1545)
based on ground-truth data, ancillary land cover data and GoogleEarth

Box 1
Pseudo-code describing the workflow for the proposed GA fitness function.

1. Run the image segmentation;
2. Load training data into the segmented image;
3. Calculate segment statistics (e.g., mean, standard-deviation) for classification features;
4. Merge training and segment statistics data (steps 2-3);
5. Do train/test data partitions (e.g., 5-fold cross-validation);
6. For each train/test set:

6.1. Train the supervised classifier;
6.2. Evaluate results for the test set;

7. Return the average evaluation score across all train/test rounds (fitness value);

Fig. 2. Schematic representation of the fitness function.
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imagery.
SegOptim uses a simple threshold rule for performing the conversion

of user-defined training samples or areas (in a raster representation)
into training segments. This uses a threshold value ( =t ]0, 1]) defined
by the user and the areal proportion ( =a [0, 1]c ) of the segment cov-
ered by each class =c {0, 1} (plus the background or NoData class).
Then, the following rule is applied for single-class problems:

=
=

=

if a t
if a

Null otherwise

1,
0, 0

,

c

c

1

0

For multi-class problems, this threshold rule operates in a slightly
different manner. First, a cross-tabulation matrix is generated by cal-
culating the proportion of each segment covered by each land cover
class (Fig. 3).

After determining the majority class (i.e., the class with higher areal
coverage) the train function verifies if that class coverage is above or
equal to t , if not, the segment is removed from the training set. In the
example (Fig. 3), if =t 0.5, then segments with identifiers

=SID N{1,2, } would be kept while =SID {3} would be removed.
Overall, the higher the value of the threshold, t , the ‘purer’ the training
segments will be.

2.2.2. Image data pre-processing and segmentation features
Input imagery used for SegOptim testing was selected to cover a

diverse set of spatial resolutions (from high at 20 m to ‘ultra’-high at
0.03 m), different EO platforms (from airborne: SenseFly® UAV, to
spaceborne: WorldView-2, RapidEye and Sentinel-2a) and different

spectral resolutions (from 3 up to 10 bands; Table 3 and Fig. 4).
Image data from a SenseFly® UAV were acquired and pre-processed

according to Gonçalves et al. (2016) for test site E1 on 2013-03-17, and
for test site E2 on 2014-11-20. Raw digital number (DN) values were
used for image segmentation and classification. For test site E3, one
WorldView-2 image for 2013-06-23 was pre-processed and orthor-
ectified according to Monteiro et al. (2017). For E4, one RapidEye
image for 2014-10-29 (not previously used) was freely available from
ESA’s EOLi-SA Catalogue and Ordering Service and the Copernicus
Urban Atlas initiative. We pre-processed image data and radio-
metrically calibrated to top-of-the-atmosphere (TOA) reflectance using
at-sensor metadata. As for test sites E5 and E6, Sentinel-2a data (also
not previously used) was collected from ESA’s Sentinel DataHub (URL:
https://scihub.copernicus.eu) for two different dates: 2016-03-14 and
2016-07-19 and processed to bottom-of-the-atmosphere (BOA) re-
flectance (level L2A) using SNAP with sen2cor atmospheric correction
plugin (Mueller-Wilm et al., 2016). Segmentation features mainly co-
incide with spectral bands used as ancillary information to acquire
ground-truth data in the field or for manually digitizing training sam-
ples. The segmentation feature space encompassed less dimensions (in
comparison to the classification feature space) to allow fast processing
needed to run segmentation. For E1, E2, E3, and E4 the Red (R), Green
(G) and Blue (B) bands were employed while for E5 and E6 we used the
R, G, B bands plus the Near-infrared (NIR). In particular, for test site E6
we used these four bands for the two available dates (March and July
2016) to improve segmentation results and capture seasonal differ-
ences.

2.2.3. Classification features
Classification features were used to extract signatures related to

each class of interest. These data enable the classifier to learn from class
attributes and later use those signatures to label each object in the
image. For each test site, several types of classification features were
used (Table 4), namely: (a) spectral data – reflectance values or raw DN
values in case of UAV images; (b) alternative colour spaces (other than
RGB but with better separability between components; e.g., XYZ, YUV);
(c) multiple combinations of band ratios in the form: =BR b b/i j where
bi and bj are any two different spectral bands; (d) vegetation and/or
water indices (e.g., NDVI, EVI, NDWI); (e) multiple combinations of
Normalized Difference Indices (NDI) in the form

= +NDI b b b b( )/( )i j i j ; (f) texture operators such as Haralick
(Haralick, 1979) (HL; e.g., energy, entropy, correlation, inertia), Local
Statistics (LS; e.g., mean, variance) or Structural Feature Set (Huang
et al., 2007) (SFS; e.g., Length, Width, PSI, W-Mean) based on different
kernel sizes and parameterizations; and (g) topographic features (e.g.,
elevation, slope, curvature) or surface elevation.

2.2.4. Feature importance evaluation
Based on the best solution for each test site, we calculated feature

importance scores from the random forest algorithm. This score mea-
sures the total decrease in node impurities from splitting on each fea-
ture, averaged over all trees. For classification, the node impurity
(defined broadly as how well the trees split the data) was measured by
the Gini index. Calculations used the ‘importance’ function from
randomForest R package (Liaw and Wiener, 2002). Due to differences in

Table 1
GA parameters used for running the image segmentation tests.

GA acronym Definition Value

popSize The population size (number of individuals or solutions) generated at each round. 20
pcrossover The probability of crossover between pairs of chromosomes. Typically defined as a large value close to 1. 0.8
pmutation The probability of mutation in a parent chromosome. Usually mutation occurs with a small probability. 0.2
elitism The number of best fitness individuals to survive at each round. 1
maxiter The maximum number of iterations to run before the GA search is halted. 100
run The number of consecutive generations without any improvement in the best fitness value before the GA is stopped. 20

Table 2
List of software packages and algorithms for image segmentation currently
available in SegOptim. Also includes the list of currently optimizable parameters
by SegOptim.

Software /
package

Version Algorithm(s) Optimizable image
segmentation parameters

ESRI® ArcGIS 10.3.1 Mean-shift Spatial detail
Spectral detail
Minimum segment size

GRASS GIS 7.2.0 Region growing Merge threshold
Minimum segment size

Orfeo Toolbox 5.10.1 Large-scale mean-shift Spatial detail
Spectral detail
Minimum segment size

RSGISLib 3.2 Shepherd k-means
iterative elimination

Number of clusters
Spectral threshold
Minimum segment size

SAGA GIS 4.0.1 Simple region growing Bandwidth
Gaussian weighting
bandwidth
Variance in feature space
Variance in position space

TerraLib 5.2.1 Mean region growing Merge threshold
Minimum segment size

Multi-resolution image
segmentation

Compactness weight
Colour weight
Minimum segment size
Merging threshold
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feature importance scores ( impf ) between test sites, we normalized
them as =nimp imp max imp/ ( )f f f . Then, we obtained the maximum
nimpf value for each type of feature (e.g., NDI combinations, topo-
graphy/surface, texture) in each test site.

2.2.5. Computing time measurements
For comparing the amount of time taken by each segmentation al-

gorithm to achieve an optimal solution, we measured the computing
times required to achieve this objective for all test sites with the random
forest algorithm in three replicate rounds. These measures were ob-
tained in a desktop PC running MS Windows 7 Enterprise 64-bit SP1,
with an Intel® Core™ i7-4770S CPU @ 3.10 GHz (4 cores, 8 threads),
16Gb RAM DDR3 and an SSD drive (SATA-II 3.0Gb/s). To speed-up
computations, we used five parallel cores in GA runs.

3. Results

3.1. Classification performance across test sites

Supervised classification performance for 5-fold cross-validation,
based on optimized image segmentation, attained very good to ex-
cellent results across the six test sites (see Table 5 and Fig. 5). Kappa
values ranged from 0.96 (E1) to 1.00 (E3) for single-class tests and,
between 0.85 (E2) to 0.94 (E6) for multi-class tests (see also Supp. Info.
– Appendix S4 with confusion matrices and producer/user accuracies).

Overall, no particular image segmentation algorithm outperformed
its competitors in our test. Still, TerraLib and SAGA region growing-
based algorithms were selected twice. In contrast, for classification
methods, the RF algorithm has shown very good overall performance
being selected five out of six times as the best performing classification
algorithm (in some instances tied with other techniques, E3 and E6).

3.2. Performance differences and optimization results per test site

When analysing the distribution of paired absolute differences of
performance (Kappa index) for each test site across segmentation al-
gorithms (median = 0.03) and across classification algorithms (for the
same segmentation method; median = 0.06) we found a significant
difference (p < 0.01) with larger performance differences arising from
the classification algorithm used, rather than the type of segmentation
method. However, when looking at disaggregated differences per test
site, in fact, for half of the situations we found greater differences ori-
ginated by the segmentation algorithm [although not all were sig-
nificant, E1: not-significant, E3: (p < 0.01) and E4: (p < 0.1)] and
half otherwise [E2: (p < 0.001), E5: (p < 0.01) and E6: (p < 0.01)].

Results also showed a large difference, equal to 0.25 (in average),
between the best and worst performer combination of segmentation/
classification algorithms for each test site although these comparisons
are always based on optimized setups (Table 5).

The best segmentation algorithm per test site were E1: SAGA GIS
Simple Region Growing, E2: RSGISLib Shepherd iterative elimination,
E3: multiple segmentation algorithms were selected, E4: GRASS GIS
region growing, E5: TerraLib Mean Region Growing and, for test site
E6: Orfeo Toolbox Mean-shift. The complete set of all optimized para-
meters can be found in Supp. Info. – Appendix S5.

In terms of improvement degree due to GA parameter optimization,
we also recorded widely different results across tests, varying from
relatively low improvement (observed in E6 or E2; Fig. 6) to high im-
provement (E1, E4 or E5; Fig. 6). Despite some differences in the degree
of improvement, GA optimization was always capable of bettering
segmentation parameters in comparison to the initial settings or to the
average.

3.3. Feature importance

Due to differences between test sites in terms of input classification
features (related to dissimilarities in spatial and spectral resolutions of
the tested images), extracting general patterns of feature importance is
difficulted. Nonetheless, results show that, in decreasing order of im-
portance, NDI combinations, spectral band data (in E6 for different
seasons, spring and summer) combined with features extracted from
topography/land surface provided good results (Fig. 7). Along these,
commonly used vegetation/water indices and band ratios also provide
relevant features for classification (for more details see Supp. Info. –
Appendix S6).

3.4. Computing times

Computing time measurements (Fig. 8) show that ArcGIS/Mean-
shift (avg.=1.12h, std.-dev.=1.17h), SAGA Region-growing (1.51h,
1.63h), and RSGISLib Shepherd (2.15h, 2.32h) were the fastest three
algorithms in the tests, while TerraLib Baatz (2.23h, 1.85h), GRASS
Region-growing (2.27h, 1,90h), TerraLib mean region-growing (2.34h,
2.05h), and Orfeo Toolbox Large-scale mean-shift (2.92h, 3.06h), per-
formed relatively slower. A linear model, used to predict computing
times, showed that the number of pixels of the input image along with
the number of GA iterations, are capable of explaining ca. 82% of the
variance (R2=0.82, F(2,124)=273.2, p < 0.001; see also Supp. Info. –
Appendix S7). Despite both variables were considered significant for
explaining computing times, image size was clearly more important
(t=16.10, p < 0.001).

4. Discussion

4.1. Main contributions to improve GEOBIA workflow

In this study we developed a generic approach to object-based
analysis comparison and optimization which integrates two crucial
steps in GEOBIA workflows typically exhibiting mutual dependencies:
image segmentation and classification (Baatz et al., 2008). Due to their
flexibility and power, we selected GA as a suitable method to optimize
and fine-tune segmentation parameter values. Overall, the use of GA for
optimizing image segmentation parameters with the aim of maximizing
the thematic accuracy of supervised classification, together with the
comparison of multiple techniques, represents a significant advance-
ment in GEOBIA workflows.

A new open-source R package (SegOptim) implements the proposed
approach with a rich set of features for testing, comparing and opti-
mizing different image segmentation and classification algorithms
within the R environment and computing language (R Development
Core Team, 2017). The several tests performed for this study strongly
suggest that SegOptim provides a novel and robust comparison of sev-
eral state-of-the-art algorithms and software focused on the object-
based analysis of EO data for different application contexts [see also,
e.g., (Li et al., 2016; Marpu et al., 2010; Meinel and Neubert, 2004;
Teodoro and Araújo, 2016)].

4.2. Performance comparison and best option selection

Given their wide accessibility for users, comparisons focused on
open-source software for GIS and Remote Sensing analyses. GA-

Fig. 3. An example cross-tabulation by segment and land cover class (SID:
segment unique identifier).
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Fig. 4. Segmentation features and training data used for testing the GA-based approach in SegOptim package for single-class problems (detection of invasive species;
E1, E3 and E5 test sites in top-two rows) and multi-class (habitat and land cover/use mapping; E2, E4 and E6 test sites in bottom-two rows).
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optimized results for image segmentation and object-based classifica-
tion allowed to identify which algorithms performed best for each si-
tuation. Tests encompassed a wide range of sites across northern
Portugal from coastal beach environments or urban settlements up to
complex mosaic landscapes in mountainous areas covering distinct
environmental conditions, landscape patterns and dynamics. Different
input EO imagery were also tested, ranging from ‘ultra’-high resolution
UAV data (0.03 - 0.10 m), very-high resolution (WorldView2, 2 m -
RapidEye, 5 m) to high resolution Sentinel-2a (10–20 m) multi-tem-
poral images. Calibration conditions for image segmentation, classifi-
cation and optimization were also diverse encompassing a wide range
of problems and objectives from single-class (aiming to identify and
map the distribution of invasive species) to multi-class problems (with
the objective of discriminating and mapping natural habitats or land
cover/use classes).

Our results highlight that no particular combination of an image
segmentation and a classification algorithm is suited for all the tasks/
objectives, an empirical verification of the “no free-lunch theorem”
[NFLT; (Wolpert, 1996; Wolpert and Macready, 1997)] for object-based
image classification problems. Broadly described, the NFLT (which,
among other, applies to machine-learning and optimization problems)

implies that learning algorithms “cannot be universally good” across all
problems and domains (Magdon-Ismail, 2000). This seems to apply also
in our particular case and especially for image segmentation algo-
rithms. Besides theoretical implications, this means that comparing and
optimizing procedures is crucial for determining which ones are more
suited for a particular objective. SegOptim provides the required func-
tionalities for this purpose. Despite these results, the RF classifier has
shown good overall performance across tests, which is coherent with
previous findings (Fernández-Delgado et al., 2014). However, this may
be a consequence of this algorithm requiring much less fine-tuning in
comparison to other techniques such as SVM (Breiman, 2001).

The results from our tests also showed that, depending on the spe-
cific problem under consideration, either segmentation algorithms
produce greater differences in object-based analyses or (more likely)
different classifiers will generate stronger differences. Still, most studies
focus only on comparing performance differences between classifiers
[e.g., Li et al. (2016)]. In addition, algorithm comparisons may be of
particular importance given that we found strong differences between
“best” and “worst” performers for the same task/objective, which may
imply that the probability of obtaining sub-optimal results without
comparing available methods and/or optimizing its parameters is fairly
high.

Deciding upon which features to use (e.g., spectral, texture, shape)
and pre-selecting those features is key to any GEOBIA workflow in
order to obtain good classification results (Ma et al., 2017). Although
feature selection optimization is at the moment not included in the
package, users should be aware of this issue and exploit different types
of features, thus taking advantage of R’s ability to analyse data and
iteratively feed classification pipelines. Inspecting feature importance
scores also provides a way to support decisions, as was done here (cf.
Fig. 7 and Supp. Info. – Appendix S6). Our results show that using
multiple normalized difference combinations of image bands provided
the best results in our tests. In future SegOptim releases we aim to im-
prove these functionalities and provide better guidance to users.

Besides the “best solution” (i.e., the one with best performance),
other solutions may also be visually inspected because these may also
provide good results worth to consider. Lang (2008) considers that
human perception or cognition skills required to evaluate the deli-
neated and classified objects is still the “ultimate benchmark” for as-
sessment. In the same sense, user control and expert decision are still
required to assess situations of potential under- or over-segmentation,
and to make informed choices, similarly to what Grybas et al. (2017)
found for unsupervised segmentation parameter optimization.

An alternative to selecting the “best solution” could be to ensemble
multiple solutions (a.k.a. “classifier stacking” or “decision fusion”).
Although we could not find any examples combining different seg-
mentation methods, ‘fusing’ multiple classifiers is often performed with
gains in terms of accuracy (Clinton et al., 2015; Löw et al., 2015; Oza
and Tumer, 2008).

Table 4
Types of classification features used for each test site. NDI – Normalized Difference Index combinations based on any two different bands; HL – Haralick texture
features; LS – Local Statistics features; SFS – Structural Feature Set texture features. (*) for the features in E6, two images for March and July 2016 were used to
calculate classification features.

Test site Classification features

Spectral bands Alternative colour spaces Band ratios Vegetation / water indices NDI combinations Texture operators Topography / surface elevation

HL LS SFS

E1 ✓ ✓ ✓ ✓ ✓
E2 ✓ ✓ ✓ ✓ ✓ ✓
E3 ✓ ✓ ✓
E4 ✓ ✓ ✓
E5 ✓ ✓ ✓
E6 ✓* ✓* ✓* ✓

Table 5
Results for 5-fold cross-validation using the Kappa index to evaluate object-
based classification performance based on SegOptim’s GA-optimized image
segmentation for each algorithm. Values highlighted in bold represent the best
solutions for each test site. E1, E3 and E5 are single-class problems while the
remaining E2, E4 and E6 are multi-class problems.

Segmentation
software / algorithm

Classification
method

Test site

E1 E2 E3 E4 E5 E6

ESRI® ArcGIS – Mean-
shift

RF 0.96 0.78 0.77 0.86 0.91 0.92
SVM 0.90 0.74 0.78 0.83 0.94 0.93
GBM 0.95 0.59 0.84 0.83 0.82 0.87

GRASS GIS – Region
Growing

RF 0.87 0.79 0.97 0.92 0.95 0.91
SVM 0.88 0.73 0.94 0.70 0.93 0.93
GBM 0.90 0.62 0.95 0.85 0.87 0.81

SAGA GIS – Simple
Region Growing

RF 0.93 0.79 1.00 0.88 0.91 0.93
SVM 0.84 0.76 1.00 0.87 0.87 0.92
GBM 0.96 0.66 1.00 0.84 0.82 0.86

Orfeo Toolbox – Large
Scale Mean-shift

RF 0.89 0.80 0.92 0.88 0.94 0.94
SVM 0.86 0.73 0.90 0.86 0.90 0.94
GBM 0.89 0.61 0.83 0.84 0.78 0.87

RSGISLib – Shepherd
Iterative
Elimination

RF 0.79 0.85 0.99 0.81 0.86 0.86
SVM 0.75 0.74 0.99 0.79 0.87 0.86
GBM 0.75 0.61 0.99 0.76 0.71 0.76

TerraLib – Mean
Region Growing

RF 0.92 0.80 1.00 0.69 0.97 0.90
SVM 0.94 0.72 1.00 0.66 0.97 0.73
GBM 0.88 0.61 0.92 0.60 0.84 0.81

TerraLib –
Multiresolution
Baatz-Schäpe

RF 0.79 0.81 1.00 0.88 0.92 0.93
SVM 0.93 0.74 1.00 0.87 0.93 0.93
GBM 0.88 0.63 1.00 0.85 0.86 0.85
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4.3. A general framework for GEOBIA optimization

GEOBIA has become a popular toolset for performing land cover
classification among many other applications. However, the critical
step of defining the best values for image segmentation parameters
remains problematic. Several works proposed different unsupervised
(Dragut et al., 2014; Grybas et al., 2017) or supervised methods
(Clinton et al., 2010; Liu et al., 2012; Montaghi et al., 2013) for this
purpose, with both groups of methods holding advantages and caveats.

Our supervised approach however, differs from what we found in
the literature, since previous approaches typically measure the geo-
metric, arithmetic, topological or spectral discrepancy between a re-
ference dataset and image segments. Instead, the cornerstone of our
approach is the close integration between both the image segmentation
and the classification steps common in GEOBIA workflows (Baatz et al.,
2008; Blaschke, 2010; Lang, 2008). Hence, the objective was to use GA

for optimizing image segmentation parameters, with the aim of max-
imizing the thematic accuracy of supervised classification, thus bene-
fiting both steps in an iterative fashion. This way we provide a rela-
tively simple and generalizable approach for optimizing object-based
image analysis and compare multiple techniques. From our tests, we
observed that this approach allows to define segmentation parameters
which balance between the over- and under-segmentation spectrum
across all target classes, without a relevant loss in overall classification
performance.

Although GA-based optimization may help to improve object-based
analyses, it is still crucial that the human operator carefully defines
every input and monitors the optimization process. More specifically, in
some preliminary runs we found that GA can provide useless or low
performance results if (for example) segmentation parameter bounds
are defined too broadly. It is up to the user to rectify those kinds of
situations. To profit from GA-based optimization, and to avoid high

Fig. 5. Classification outputs generated from the best GA-based solutions for each test-site. E1, E3 and E5 are single-class problems while the remaining E2, E4 and E6
are multi-class problems. E1 depicts the distribution of Carpobrotus sp. invasive species using SAGA GIS Simple Region Growing segmenter and GBM classifier; E2
maps different natural habitats using RSGISLib Shepherd Iterative Elimination segmenter and Random Forest (RF) classifier; E3 shows the distribution of Acacia
dealbata invasive species (yellow patches) using TerraLib Baatz-Schäpe multi-resolution segmenter and RF classifier; E4 shows land cover/use classification using
GRASS GIS Region Growing segmenter and RF classifier; E5 shows the distribution of small patches of the invasive species Acacia dealbata across the landscape using
TerraLib Mean Region Growing segmenter and RF classifier; and, E6 shows land cover/use mapped with Orfeo Toolbox Mean-shift segmenter and RF classifier. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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computational costs, the user must carefully set up its parameters as
well as the search space.

4.4. Future developments and outlook

The volume of data has grown immensely in recent years due to
high- and very-high spatial resolution EO platforms. “Big data” poses
several problems and challenges for processing, and not all available
GEOBIA algorithms and software are up to the task [but see, e.g.,
Michel et al. (2015) or Happ et al. (2016)]. The SegOptim package by
performing complex analyses in a desktop-based environment is
therefore limited to the available resources in terms of RAM, CPU
power and disk space/speed. One way to circumvent this problem, and
still optimize object-based analysis, is to extract smaller (and

representative) regions-of-interest (ROI) preferentially through an
adequate spatial sampling design (e.g., Köhl et al., 2006) and process
each ROI independently. By inspecting the distribution properties of the
target segmentation parameters for all ROI’s it is still possible to obtain
useful information without having to use a complete scene.

Another limitation of our GEOBIA optimization approach is that GA
require some time to process, varying from minutes to several hours
depending on the segmentation algorithm, on its parametrization and,
more strongly, on the input image size and on the number of GA
iterations used for convergence (Fig. 7). A possible solution to speed-up
computations is to use parallel processing, already implemented in R’s
‘GA’ package (Scrucca, 2013). As mentioned earlier, another possible
solution is to provide a thoughtful and problem-specific configuration
of GA optimization parameters (among other) leading to faster and

Fig. 6. GA optimization paths for each test site showing different convergence profiles in terms of speed: fast for E1, E3 and E6, intermediate for E2 and E4, and slow
for E5. These paths represent only the best performing solutions (i.e., combination of an image segmentation and classification algorithms) for each test site. The
black line represents the average Kappa for all individuals (n = 20) at each round of the GA optimizer while the red line shows the Kappa value of the best solution by
round. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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more meaningful results.
Besides these computational limitations, our proposed approach

focuses on devising a non-hierarchical, single-level classification for the
area of interest, thus inherently simplifying some aspects, and making it
less applicable to some settings or goals. Albeit ‘simple’, our optimized
object-based classification approach may still be useful and adaptable
to several situations. In addition, future developments of the package
aiming to explore hierarchical, contextual and topological properties
and relations between objects as features for classification will pave the

way to obtain enhanced performances. Moreover, further developments
(already on the way) will also include discrepancy measures between
reference polygons and corresponding segments (Liu et al., 2012) for
optimizing image segmentation.

In fact, SegOptim open-source R package offers users the possibility
to test, compare and optimize different GEOBIA methods related to
image segmentation and classification with benefits for producing
thematic maps for land cover characterization or mapping specific
classes based on EO image data. Besides these features, this package

Fig. 7. Maximum normalized feature im-
portance by type calculated from random
forest algorithm for the best solution per test
site (E1 to E6). Feature types are ordered by
their usage frequency in the tests (left side top:
more frequent, bottom: less frequent). Feature
types are: NDICOMB – normalized difference
index combinations, SPCBND – spectral bands,
VGWTIND – vegetation or water spectral in-
dices, BNDRATIO – band ratios, TOPSURF –
topography and surface elevation, TEXTOPE –
texture operators, ALTCOLSP – alternative
color spaces.

Fig. 8. Average computing times taken to achieve the optimal solution in GA (in hours ± std.-error, n = 3). Each bar represents one test site (E1 to E6) and each plot
an image segmentation technique (ArcGIS_MShift – ESRI ArcGIS mean-shift, GRASS_RG – GRASS region-growing, OTB_LSMS – Orfeo Toolbox large scale mean-shift,
RSGISLib_Shep – RSGISLib Shepherd k-means iterative elimination algorithm, SAGA_SRG – SAGA simple region-growing, Terralib_Baatz – TerraLib Baatz-Schäpe
multi-resolution segmentation, Terralib_MRG – TerraLib mean region-growing). Time measurements used the Random Forest algorithm for classification.
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also offers the possibility to use several unsupervised classification
methods and compare different solutions through cluster validity in-
dices. Exploring the latter in detail is, however, outside the scope of this
study. By providing free access to SegOptim we aim to overcome lim-
itations for accessing methods that may be useful for all users interested
in applying these techniques.

Still, SegOptim is only giving its first steps as a computational so-
lution for such a complex problem. The roadmap of future develop-
ments includes (among others) user-defined fitness functions based on
cross-validation results, integrating and testing more algorithms al-
ready available (for segmentation but mostly for classification), multi-
classifier stacking/fusion, calculation of shape and context metrics for
segments, the possibility of evaluating and performing optimization
through supervised discrepancy measures or even unsupervised tech-
niques. We are hopeful that researchers and practitioners may find the
package useful for their activities and research, allowing to test, adjust
and improve its functionalities over time.
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