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A B S T R A C T

Wildfires constitute an important threat to human lives and livelihoods worldwide, as well as a major ecological
disturbance. However, available wildfire databases often provide incomplete or inaccurate information, namely
regarding the timing and extension of fire events. In this study, we described a generic framework to compare,
rank and combine multiple remotely-sensed indicators of wildfire disturbances, in order to not only select the
best indicators for each specific case, as well as to provide multi-indicator consensus approaches that can be used
to detect wildfire disturbances in space and time. For this end, we compared the performance of different re-
motely-sensed variables to discriminate burned areas, by applying a simple change-point analysis procedure on
time-series of MODIS imagery for the northern half of Portugal, without external information (e.g. active fire
maps). Overall, our results highlight the importance of adopting a multi-indicator consensus approach for
mapping and detecting wildfire disturbances at a regional scale, that allows to profit from spectral indices
capturing different aspects of the Earth's surface, and derived from distinct regions of the electromagnetic
spectrum. Finally, we argue that the framework here described can be used: (i) in a wide variety of geographical
and environmental contexts; (ii) to support the identification of the best possible remotely-sensed functional
indicators of wildfire disturbance; and (iii) for improving and complementing incomplete wildfire databases.

1. Introduction

Worldwide, wildfires pose a major threat to a wide range of en-
vironmental, social, and economic assets. In the Mediterranean biome,
wildfire activity has increased in the last decades (San-Miguel-Ayanz
et al., 2013). Today, they constitute one of the major ecological dis-
turbances as they can disrupt populations, communities and ecosys-
tems, in terms of structure, composition, and function (Pickett and
White, 1985). Indeed, fire (or disturbance regime) has been proposed
not only as an Essential Climate Variable (ECV), but also as an Essential
Biodiversity Variable (EBV) related to ecosystem function to assess
biodiversity status (Pereira et al., 2013). There is thus a need to detect
and characterize wildfire events in order to better understand how fire
extent, frequency, and timing affect multiple environmental and socio-

economic processes (Benali et al., 2016).
However, currently available fire databases may be hindered by

errors, including coarse spatial resolutions, limited temporal extent,
missing data, and unknown accuracy (e.g. ICNF, 2017). Furthermore,
the costs of acquiring spatially comprehensive and consistent in-field
data regarding wildfires (e.g. burn perimeters, ignition sources, defla-
gration time) can be high, as it is a time consuming and difficult pro-
cess, and also because the allocated resources to it by land management
authorities can highly fluctuate across time and space (Benali et al.,
2016; Schroeder et al., 2016). There is thus a need to employ consistent
frameworks to characterize wildfire disturbances that can help over-
come those problems, by correcting or complementing the information
provided by available fire databases.

In this context, an important contribution has been provided by
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Remote Sensing (RS) based on Earth Observation Satellites (EOS),
which has particular utility for rapidly measuring, monitoring, and
developing low-cost indicators for fire-related applications, with an
increasing number of products being made available in recent years
(Mouillot et al., 2014). As one of the sensors that currently provides
frequent data with spectral bands appropriate for wildfire applications,
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
the Terra and Aqua satellite platforms has been broadly used for fire
applications. Although this sensor provides information at moderate to
coarse spatial resolutions for wildfire disturbance mapping, it can be a
valuable tool for monitoring, mainly at regional scales, due to its high
data acquisition rate, wide availability of the datasets, and a data ar-
chive spanning almost two decades (Giglio et al., 2018; Justice et al.,
2002).

RS-based approaches to map and detect wildfire disturbances can be
categorized in one of two types (Joyce et al., 2009), namely: (i) active
fires (e.g. MODIS Thermal Anomalies and Fires products MCD45 and
MCD64, VIIRS NRT 375 Active Fire products); or (ii) burned areas (e.g.
MODIS Burned Area products MOD14/MYD14/MCD14, Fire_cci Global
Burned Area products). Detection of fire itself – active fires (AF) –
consists in identifying thermal anomalies, usually at moderate to coarse
spatial resolutions, but with high temporal frequency (e.g. daily), in
order to detect phenomena that can be sometimes very concentrated in
time, and do not account for the immediate effects of the fire on eco-
systems directly (Chu and Guo, 2013; Lentile et al., 2006). In turn,
detection of the short-term effects of fire events on the land surface –
burned areas (BA) – type of approaches consists of mapping areas with
burnt vegetation, by comparing pre- and post-fire reflectance in-
formation, and also against surrounding areas. As this uses optical and/
or non-thermal infra-red data, it can be obtained at finer spatial scales,
but often at lower temporal frequencies (Chu and Guo, 2013; Lentile
et al., 2006), although this has been improving throughout the years.
Finally, as this second type of approaches provides more direct ob-
servations of the effects of fire on the land surface (e.g. change in ve-
getation), rather than the physical phenomenon itself, they are more
suitable for environmental applications that focus on biotic components
(e.g. loss of biomass and/or habitats, water and nutrient availability),
rather than abiotic components (e.g. gas emissions, pollution), and thus
more fit to study post-fire responses of ecosystems to wildfire dis-
turbances (Lentile et al., 2006).

In this context, several different variables extracted from time-series
of satellite images (SITS), have been used for detecting wildfire dis-
turbances, and their immediate effects on terrestrial ecosystems.
Perhaps the most well-known of those are band ratios and normalized
indices – sometimes referred to as vegetation indices (VI) or spectral
indices (SI) – such as the Normalized Difference Vegetation Index
(NDVI), the Enhanced Vegetation Index (EVI), or the Normalized Burn
Ratio (NBR) (e.g. Moreno Ruiz et al., 2012; Veraverbeke et al., 2011). In
a different approach, the variation in the LST/SI can be used for a wide
range of applications related with disturbance events (e.g. Petropoulos
et al., 2009). For instance, the MODIS Global Disturbance Index (MGDI;
Mildrexler et al., 2009) uses the contrast between LST and EVI to map
disturbances such as wildfires, with the underlying principle that LST
decreases with an increase in vegetation density, given the greater la-
tent heat transfer from increased evapotranspiration.

The Tasselled Cap Transformation (TCT; Lobser and Cohen, 2007)
has also been previously used for the development of indicators of
wildfire disturbances (e.g. Hilker et al., 2009). The three TCT main
features – Brightness, Greenness, and Wetness – are SI but contain in-
formation on a wider portion of the electromagnetic spectrum, as more
bands are used in their computation. These have been compared with a
number of biophysical parameters, including albedo, amount of pho-
tosynthetically active vegetation and soil moisture, respectively
(Mildrexler et al., 2009). Using these variables, Healey et al. (2005) and
Thayn and Buss (2015) proposed a simple and weighted version, re-
spectively, of a wildfire disturbance indicator, based on the principle

that the Brightness feature increases after a fire, while the Greenness
and the Wetness features decrease. On the other hand, as noted by
Thayn and Buss (2015), in the period immediately after the fire event,
the Brightness values actually decrease, since the burned areas are
covered in charcoal and ash and thus are darker than the unburned
areas. In a more recent study (Fornacca et al., 2018), TCT components
were also shown to be useful for burn scar mapping, and for evaluating
burn severity and post-fire recovery, from short- to long-term.

It is known that results can vary depending on spectral index and
methods (Hislop et al., 2018). Therefore, in order to optimize accuracy
of burned area detection algorithms, the best spectral indices (SI)
should be selected accordingly (Fornacca et al., 2018). However, there
is still uncertainty around which are the most essential variables for
detecting and assessing wildfire disturbance, and their advantages and
limitations (Hislop et al., 2018). In this study, we describe a generic
framework to compare, rank and combine multiple remotely-sensed
indicators of wildfire disturbances, in order to not only select the best
indicators for each specific case, as well as to provide multi-indicator
consensus approaches that can be used to detect wildfire disturbances
in space and time. For this end, we compared the performance of dif-
ferent remotely-sensed variables to discriminate burned areas, by ap-
plying a simple change-point analysis procedure on time-series of
MODIS imagery for the northern half of Portugal, without external in-
formation (e.g. active fire maps). In particular, we assessed which
variables: (i) performed better in detecting and mapping wildfire oc-
currences at an annual temporal resolution; (ii) estimated better the
date of occurrence (i.e. start of the wildfire); and (iii) could better
complement missing information on available national fire databases,
such as the one demonstrated for our study area. We finally discuss
which variables may hold the greatest potential to contribute to assess
and monitor wildfire disturbance, to be used as essential variables or to
improve algorithms of wildfire disturbance detection and mapping.

2. Material and methods

2.1. Study area and data description

2.1.1. Study area
In order to illustrate our proposed framework, we used a study area

that corresponds to the northern half of mainland Portugal, located in
northwest Iberian Peninsula (Fig. 1). This region is among those with
the highest incidence of wildfires across Europe (Barros and Pereira,
2014), both in terms of number of occurrences, and burned area (San-
Miguel-Ayanz et al., 2017). It includes a strong climatic gradient (from
humid Atlantic to dry Mediterranean), and a large diversity of bedrock
formations, soil types, land cover and land use types (Carvalho-Santos
et al., 2014; Vicente et al., 2013). Moreover, socio-economic drivers
(e.g. land abandonment) and environmental conditions (e.g. steep
slopes, terrain ruggedness, pyrophytic vegetation) contribute to a
highly fire-prone region (Oliveira et al., 2012).

2.1.2. Spectral variables
Two MODIS products were downloaded and pre-processed using the

MODIStsp R package (Busetto and Ranghetti, 2016), for all available
dates between 2001 and 2016: (i) the Surface Reflectance (SR) product
MOD09A1 (8-Day, L3, Global, 500), Collection 6 (Vermote, 2015); and
(ii) the Land Surface Temperature (LST) and Emissivity product
MOD11A2 (8-Day, L3, Global, 1-km), Collection 6 (Wan et al., 2015).
Both products were re-projected to WGS84/UTM zone 29 N coordinate
system, converted to GeoTIFF format, and re-sampled to 500m using
the nearest neighbor method, so that all raster data were at the same
resolution.

In order to reduce noise that hinders time-series data we employed a
filter based on the Hampel outlier identifier (Hampel, 1974, 1971)
(window=7 dates). This filter is considered robust, and efficient in
identifying identifiers, as well as extremely effective in removing time-
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series outliers (Pearson, 2002).
Then, the day-LST from the LST product was extracted and cali-

brated according to the guidelines described in the product's official
documentation, and several spectral indices (SI) were computed by
combining spectral bands from the SR product (Table 1), using GDAL
(GDAL Contributors, 2017), and the rasterio Python package (Gillies
et al., 2016). The final selection of variables was based on a literature
review focused on potential indicators of wildfire disturbance, and in-
cludes SI that are commonly used in fire studies, such as: vegetation
indices, “wetness” indices, fire-specific indices (e.g. Abade et al., 2015;
Harris et al., 2011; Mildrexler et al., 2007; Schepers et al., 2014;
Veraverbeke et al., 2012), and individual, or combinations of, tasseled
cap features (e.g. Axel, 2018; Healey et al., 2005; Hermosilla et al.,
2015; Patterson and Yool, 1998; Rogan and Yool, 2001; Santos et al.,
2017). Finally, the Whittaker-Henderson smoother (Henderson, 1924;
Whittaker, 1922) (with lambda= 2) was applied to these variables, in
order to further reduce the remaining noise present in the data.

2.1.3. Reference fire datasets
The results from the wildfire disturbance detection were compared

against three reference datasets, for the period between 2001 and 2016:
the MODIS burned areas products (i) MCD45A1 (Collection 5.1; Roy
et al., 2008), and (ii) MCD64A1 (Collection 6; Giglio et al., 2018), and
(iii) the Portuguese national database of burned area polygons (ICNF,
2017).

The MCD45A1 algorithm uses a bidirectional reflectance distribu-
tion function (BRDF) model-based change detection approach to handle
angular variations in the data, and analyzes the daily surface re-
flectance dynamics to locate rapid changes (Roy et al., 2008). It then
uses that information to detect the approximate date of burning, and
maps only the spatial extent of recent fires.

The MCD64A1 algorithm uses a burn sensitive VI, derived from

shortwave infrared SR bands 5 and 7 with a measure of temporal tex-
ture, to create dynamic thresholds that are applied to the composite
data. Compared to previous products (e.g. MCD45A1), MCD64A1 fea-
tures a general improvement (reduced omission error) in burned area
detection, including significantly better detection of small burns, as
well as a modest reduction in burn-date temporal uncertainty (Giglio
et al., 2018).

The Portuguese national database of burned area polygons, pro-
vided by the Portuguese national agency for nature conservation and
forests (ICNF), contains annual fire perimeters from 1975 to 2017, with
unknown accuracy, and heterogeneous characteristics – e.g. some
perimeters were obtained from ground collected data, while others
were derived from satellite imagery with different resolutions, such as
Landsat and Sentinel; and only a small proportion of fires (i.e. ca. 11%
of “big fires”) have information on date of occurrence (see
Supplementary materials for more information). The ICNF dataset was
rasterized and re-projected to WGS84/UTM zone 29N, using GDAL/
OGR v2.2.2 (GDAL Contributors, 2017), to match MODIS products.

The three reference datasets were converted to the same resolution
as the spectral variables derived from MODIS. Then, fires with burned
areas smaller than 100 ha (equivalent to 4 pixels) were excluded from
the comparisons, in order to account for limitations of detectability
inherent to the spatial scale of the MODIS products (van der Werf et al.,
2017). This has also been the threshold used by Portuguese authorities
to define “big fires” until 2013 (Ferreira-Leite et al., 2013) (later re-
defined to 500 ha).

2.2. Methodology

2.2.1. Detection of wildfire disturbances
Each selected spectral variable was used both on its own, and

contrasted with LST, in a simple ratio (i.e. LST/index), and then

Fig. 1. The study area (bottom), in the context of southern Europe (top), with a representation of fire occurrences in the decade of 2001–2010 (dots), extracted from
the European Forest Fire Information System (EFFIS).
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normalized using Z-scores normalization, pixel-wise, as: Z=(x− μ)/σ,
where ‘x’ is the original value, ‘μ’ is the time-series average, and ‘σ’ is
the time-series standard deviation, giving a total of 24 indicators. In
order to minimize the effects of both long-term and seasonal variation
on each indicator time-series, as well as to highlight abrupt changes
such as those associated with wildfire disturbance events, we decom-
posed the normalized time-series using a Seasonal-Trend decomposition
procedure based on the LOESS smoother (STL; Cleveland et al., 1990).
This was done with the ‘s.window’ and ‘t.window’ parameters both
equal to 47, as it corresponds to the next odd number from the fre-
quency of the time series, i.e. 46 images per year, and the ‘robust’
parameter set as TRUE. The LOESS procedure decomposes time-series
into ‘trend’, ‘seasonal’ and ‘remainder’ components. The resulting ‘re-
mainder’ component was used as disturbance indicator, as it corre-
sponds to the detrended and de-seasonalized time-series, and thus
contains the non-periodical variations, as well as any remaining noise
(which was greatly reduced in previous steps).

Tukey's fences (Tukey, 1977) were used for detecting wildfire dis-
turbances, by identifying which peaks could be considered outliers, i.e.
peaks farther away than ‘k’ times (in this case k=3, for ‘far away’
outliers) the interquartile range from the nearest quartile were con-
sidered as positive detections, as those represent the values that most
likely correspond to severe outliers within each pixel-wise time-series’
(Tukey, 1977). This approach also allows to obtain estimates of the
period of occurrence of the wildfire disturbance event, i.e. in which 8-
day composite it was detected. These computations were undertaken
using the R statistical programming environment (R Core Team, 2018).

2.2.2. Evaluation of indicators’ performance
In order to evaluate the performance of each indicator to detect and

map wildfire disturbances, at the annual temporal resolution, the fol-
lowing single-class performance measures were extracted from the
confusion matrices (Fawcett, 2006): Sensitivity (i.e. true positive rate)
or Producer's Accuracy (i.e. the complement of omission error), Speci-
ficity (i.e. true negative rate), User's Accuracy (i.e. the complement of
commission error), Overall Accuracy, and Cohen's Kappa. Both the
values and their respective confidence intervals for Kappas were esti-
mated using bootstrap with 10,000 repetitions, in order to test the
statistical significance of the differences between the indicators’ burned
areas maps. For simplification purposes, the detections resulting from
the wildfire disturbance indicators, and from the two reference datasets
obtained from MODIS products were compared against the national
reference database.

The results of the temporal estimations from the 24 indicators were
compared against the reference datasets, for the fires for which occur-
rence dates were available, within the 2012–2016 period. This allowed
to evaluate the indicators in terms of both temporal precision (i.e.
dispersion in the temporal estimations) – through standard deviation
(SD) and median absolute deviation (MAD), and interquartile range
(IQR), and temporal accuracy (i.e. degree of success in estimating dates
of occurrence) – using mean absolute error (MAE) and median absolute
error (MDAE), and mean (MB) and median bias (MDB). Based on this,
ten of the indicators were excluded. However, four of those were re-
considered, as they exhibited high precision, only with a systematic
error of only one composite. Those four indicators were then corrected
for systematic lag (i.e. a temporal shift of one composite was applied),
and added to the list of indicators, elevating the final count of indicators
considered to 28.

Finally, based on the performance metrics, the wildfire disturbance
indicators were ranked, which was used to find the “best” occurrence
date estimate for each pixel, i.e. the date estimate given by the highest
ranked indicator for which there was a positive detection. This, along
with the median of the date estimates from the indicators that were not
excluded by this process, provided two estimates of date of occurrence,
for each pixel. Then, these estimates, as well as the dates given by the
two reference datasets from MODIS burned area products, wereTa
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extracted and aggregated to match the geometry of the “big fire”
polygons (i.e. above 100 ha) of the national reference dataset, including
all burned area polygons both with and without prior information of the
date of occurrence, for the period of 2001–2016. This was done in order
to provide estimates of the dates of occurrence of the wildfire dis-
turbance events, to complement the information previously available in
the national reference dataset, from only a portion (ca. 11%) of the “big
fire” polygons for years between 2012 and 2016, to all “big fire”
polygons of the dataset, from 2001 to 2016 (see Supplementary mate-
rial for more information).

3. Results and discussion

3.1. Burned area mapping performance

Mapping accuracies of annual burned areas, when compared to the
national fire reference dataset, were generally high across all indicators
(Overall Accuracy≥ 0.75; Kappa≥ 0.50), with non-overlapping con-
fidence intervals for Kappa estimates in most cases (Table 2; Fig. 2).
Only the ones based on ‘wetness’ indices (except LSWI) attained lower
performance (Table 2). The highest values for Specificity and User's
Accuracy were achieved for the indicators based on TCTb and the LST/
TCTb ratio, respectively, while for the remaining performance metrics,
the highest values all resulted from the indicator derived from the LST/
TCTbgw ratio (Fig. 2).

In comparison, MODIS Burned Areas products achieved very good
accuracy results, with all performance metrics scoring above 0.92.
Although it uses an updated and improved algorithm, the Collection 6
product (MCD64) obtained slightly lower accuracies than the Collection
5.1 product (MCD45) for our study area (Table 2).

Overall, mapping accuracies, at the annual temporal resolution,
resulted in better performances when using indicators based on LST/SI
ratios, in comparison with the indicators using the same indices but
without the contrast with LST. This is in line with results from previous

studies (e.g. Mildrexler et al., 2009, 2007) where the coupling of LST
and SI, particularly in LST/SI ratios, substantially improved the detec-
tion of changes, as the two variables in the ratio respond to different
biophysical processes, thereby complementing the information content
of one another.

When compared with indicators based on more widely-used SI (e.g.
NDVI, EVI2, NBR), indicators based on tasseled cap features, and tas-
seled cap features combinations, resulted in improved accuracies,
confirming the importance of considering their use for mapping burned
areas (Arnett et al., 2014; Healey et al., 2005; Santos et al., 2017). This
could be because tasseled cap features use a wider portion of the
electromagnetic spectrum (including visible, near infrared and short-
wave infrared) than other SI, which may provide more complete pic-
tures of wildfire disturbance processes (Fornacca et al., 2018).

3.2. Temporal estimates of wildfire disturbances

The performance of estimates of wildfire occurrence dates, using 8-
day composites from the period 2012–2016, yielded diverse results
across different indicators, when compared to the dates available in the
national fire dataset (Fig. 3). Of a total of 28 indicators considered, 16
of those achieved very good results in terms of both temporal precision
and temporal accuracy, with values of median absolute deviations
(MAD), median absolute errors (MDAE), and median biases (MDB)
around zero, while interquartile ranges (IQR) were between 0 and 1
composites of 8 days. Values of mean bias (MB), standard deviation
(SD) and mean absolute deviance (MAE) were used to differentiate and
rank the indicators, with values for the two MODIS reference datasets
generally worse than the top 16 indicators (Table 3). The remaining 12
indicators were excluded from the final estimates extracted for the
national fire database, since they had overall lower scores for temporal
precision and accuracy, ranking bellow the two MODIS reference da-
tasets (used for comparison).

The indicators ‘tcbg’, ‘tbgw’, ‘tctg’ and ‘evi2’ were ranked, in that

Table 2
Performance of burned area mapping, on an annual basis (2001–2016), for the selected indicators, compared to the Portuguese national fire polygons database.
MODIS burned area products MCD45 and MCD64 were also compared, and their performance results are also presented (as “mcd45_v51” and “mcd64_v6”, re-
spectively). Note that indicators here are presented with lower case, to denote the difference between each indicator and the index, indices, or product in which it was
based on (indicator names with underscore were based in ratios, as described in the text). Both estimates for Kappas and their respective confidence intervals (CI)
were obtained by bootstrapping with 10,000 repetitions.

Indicator Formula Sensitivity Specificity Producer's accuracy User's accuracy Overall accuracy Kappa Kappa CI

mcd45_v51 – 0.929 0.992 0.929 0.991 0.960 0.921 0.918–0.926
mcd64_v6 – 0.922 0.992 0.922 0.992 0.957 0.915 0.910–0.919
lst_tbgw LST/TCTbgw 0.962 0.988 0.962 0.987 0.975 0.950 0.946–0.952
lst_evi2 LST/EVI2 0.956 0.985 0.956 0.985 0.971 0.941 0.938–0.945
lst_tctg LST/TCTg 0.949 0.975 0.949 0.974 0.962 0.923 0.920–0.928
lst_tcbw LST/TCTbw 0.927 0.991 0.927 0.990 0.959 0.918 0.912–0.920
lst_tcbg LST/TCTbg 0.889 0.994 0.889 0.994 0.941 0.883 0.878–0.888
lst_ndvi LST/NDVI 0.878 0.989 0.878 0.988 0.934 0.867 0.863–0.873
tctg TCTg 0.845 0.993 0.845 0.992 0.919 0.837 0.832–0.843
nbri NBR 0.817 0.992 0.817 0.991 0.905 0.809 0.805–0.817
tbgw TCTbgw 0.753 0.996 0.753 0.994 0.874 0.749 0.743–0.756
evi2 EVI2 0.716 0.993 0.716 0.991 0.855 0.710 0.703–0.717
lst_tctb LST/TCTb 0.662 0.997 0.662 0.996 0.830 0.660 0.653–0.668
lst_nbri LST/NBR 0.753 0.889 0.753 0.872 0.821 0.643 0.637–0.652
ndvi NDVI 0.596 0.991 0.596 0.985 0.794 0.587 0.579–0.595
tcbg TCTbg 0.588 0.996 0.588 0.993 0.792 0.584 0.578–0.593
lswi LSWI 0.556 0.996 0.556 0.993 0.776 0.552 0.545–0.560
tcbw TCTbw 0.441 0.998 0.441 0.994 0.719 0.438 0.432–0.447
tcgw TCTgw 0.421 0.710 0.421 0.992 0.709 0.418 0.410–0.426
lst_lswi LST/LSWI 0.536 0.710 0.536 0.649 0.623 0.246 0.238–0.258
tctb TCTb 0.166 0.998 0.166 0.990 0.582 0.164 0.159–0.170
lst_tcgw LST/TCTgw 0.512 0.641 0.512 0.588 0.577 0.154 0.140–0.161
lst_tctw LST/TCTw 0.051 0.997 0.051 0.937 0.524 0.047 0.045–0.051
ndwi NDWI 0.041 0.985 0.041 0.724 0.513 0.025 0.022–0.029
lst_ndwi LST/NDWI 0.020 0.998 0.020 0.910 0.509 0.018 0.016–0.020
tctw TCTw 0.019 0.995 0.019 0.794 0.507 0.014 0.012–0.017

Values in bold highlight the highest values in each column.
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order, in the first four places, being the indicators with the lowest va-
lues for SD and MAE, and low values of MB (i.e. below 4.25, 1, and
0.50, respectively). Here, “mcd45_v51” and “mcd64_v6” correspond to
the MODIS burned area products MCD45 and MCD64, respectively. On
the other hand, the majority of the indicators based on an LST/SI ratio
were among the ones excluded.

In perspective, when estimating dates of occurrence, indicators that
included at least one TCT component – but not LST – showed better

Fig. 2. Dot chart representing the yearly burned area mapping
accuracy measures for 2001–2016, for each one of the indicators
used, as well as the MODIS burned area products MCD45 and
MCD64 (as “mcd45_v51” and “mcd64_v6”, respectively), com-
pared to the national fire database. Bootstrapped estimates for
Kappa are shown with their respective confidence intervals.

Fig. 3. Temporal accuracies (a) and delays (i.e. errors) (b) of the estimates of
wildfire occurrence date, compared to the Portuguese national fire database.
The horizontal lines mark specially remarkable values for the mean absolute
errors: 1 (dots) and 2 (dashes). Besides the estimates for the indicators, the
comparison of the dates given by the MODIS Burned Area products MCD45 and
MCD64, in comparison with the national database, are shown as “mcd45v51”
and “mcd64v6”, respectively. Additional information such as sample sizes is
presented in Table 3.

Table 3
Performance statistics of temporal delays, in relation to the national reference
dataset. The values are expressed in number of 8-day composites, as this is the
maximum precision for wildfire date estimates that the input data allows. The
indicators that were corrected for a systematic lag of one 8-day composite are
denoted with the suffix “_1”. Results for the MODIS Burned Area products
MCD45 and MCD64 area also given here, as “mcd45v51” and “mcd64v6”, re-
spectively.

Rank Indicator n MAD MDAE IQR SD MAE MDB MB

1 tcbg 2851 0 0 0 3.89 0.82 0 +0.39
2 tbgw 3462 0 0 0 3.99 0.87 0 +0.43
3 tctg 3976 0 0 0 4.02 0.90 0 +0.40
4 evi2 3599 0 0 0 4.24 0.99 0 +0.46
5 lst_tctb 3325 0 0 0 4.25 1.04 0 +0.70
6 tctb 909 0 0 0 4.68 1.09 0 +0.21
7 tcbw 2121 0 0 0 4.56 1.10 0 +0.44
8 nbri 3798 0 0 0 4.56 1.15 0 +0.63
9 tcgw 2430 0 0 0 4.58 1.18 0 +0.49
10 lst_tcbg 4218 0 0 1 4.15 1.21 0 +0.91
11 lst_evi2_1 4537 0 0 1 4.16 1.26 0 +0.32
12 lst_ndwi 241 0 0 0 4.87 1.29 0 +0.71
13 lst_tbgw_1 4533 0 0 0 4.32 1.34 0 +0.60
14 ndvi 3268 0 0 0 5.23 1.46 0 +0.80
15 lswi 2530 0 0 0 5.46 1.63 0 +0.95
16 lst_tctw 336 0 0 0 5.39 1.67 0 −0.20
17 mcd64v6 4659 0 0 0 9.72 3.77 0 −2.37
18 mcd45v51 4637 0 0 1 11.49 5.46 0 −3.76
19 lst_ndvi 4091 1.48 1 1 4.10 1.36 0 +1.05
20 lst_tcbw_1 4353 1.48 1 1 4.79 1.55 0 +0.55
21 lst_evi2 4537 0 1 1 4.16 1.67 +1 +1.32
22 lst_tctg_1 4484 1.48 1 1 4.35 1.73 0 +1.20
23 lst_tcbw 4353 1.48 1 1 4.79 1.84 +1 +1.55
24 lst_tbgw 4533 0 1 0 4.32 1.86 +1 +1.60
25 lst_tctg 4484 1.48 1 1 4.35 2.44 +1 +2.20
26 lst_nbri 3824 2.97 2 7 6.46 4.79 +2 +4.37
27 lst_lswi 2876 4.45 3 7 9.86 6.55 0 +0.04
28 lst_tcgw 2844 8.90 8 12 10.47 9.34 −6 −6.04
29 tctw 155 19.27 14 21 14.79 12.77 +3 −2.41
30 ndwi 658 23.72 16 36 18.76 15.95 +1 −2.99
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overall results of temporal precision and accuracy. This contrasts with
the results from the annual mapping performance, suggesting that in-
cluding both TCT features and LST may help improve burned area
mapping, however, the inclusion of LST may result in less accurate and
less precise burn date estimation. Also, it must be noted that the in-
dicators that included all three TCT components, with or without LST,
(i.e. ‘tbgw’ and ‘lst_tbgw’) ranked in one of the top two positions for
both wildfire disturbance mapping and detection, while, to the best of
our knowledge, these indicators have not been previously used for those
specific purposes.

Together, these results reinforce that no single indicator is the best
for all purposes simultaneously, pointing to a trade-off situation, in
which the “best” (i.e. top ranked) indicators for burned area mapping,
and the best ones for estimating the respective time of occurrence, may
not be necessarily the same. This suggests that, for those purposes,
adopting a multi-indicator approach may be advantageous in order to
obtain the best possible results, in that different indicators may com-
plement the potential that each have, while compensating each other's
drawbacks, to detect and map wildfire disturbances.

3.3. Complementing fire databases gaps

For the final estimations of the date of occurrence of wildfire dis-
turbance events, inter-comparison of density distributions of the dates
given by all the five datasets compared (Fig. 4) showed an overall high
degree of similarity between the different datasets (see Supplementary
material for more detailed information). This suggests a high con-
gruence between the date estimates given by the different datasets, and
thus a reasonable confidence level in the date estimates obtained for the
remaining polygons of the national fire database, assuming the simi-
larities between datasets would hold.

The top ranked indicator (i.e. ‘tcbg’) provided estimates for 41.4%
of the complete set of “big fire” polygons of burned areas from the
national fire database, while the indicators ranked in second and third
(i.e. ‘tbgw’ and ‘tctg’) contributed with further 16.1% and 12.4%, re-
spectively (Fig. 5). Although the indicators ranked next provided esti-
mates for relatively low percentages of fire polygons, three other in-
dicators contributed to estimate dates for additional percentages of “big
fire” polygons above 5% (Table 4).

In comparison, when each of the same indicators were used in-
dependently, rather than in a rank-based sequence, the ones that were
able to provide estimates for the highest percentages of fire polygons,
were ‘lst_evi2’ and ‘lst_tbgw’ (after systematic error correction), with
95.1% each, while the top three indicators achieved percentages be-
tween 59.8% (for ‘tctb’) and 83.4% (for ‘tctg’).

Our results further highlight the potential of TCT components to be

used to estimate date of occurrence of wildfire disturbances, and – to-
gether with the results from burned area mapping – for their application
in fire studies using remotely-sensed data. This, as pointed out in other
studies (e.g. Fornacca et al., 2018), indicates that, since these SI use the
information of all seven spectral bands in the optical-NIR-SWIR regions,
they may possess enhanced capabilities to capture more aspects of
ecosystem functioning change due to fires, especially when combined.
In turn, this suggests that TCT components constitute a more complete,
comprehensive and compact package of base information to study
wildfire disturbance processes than the more commonly used SI,
making them a particularly interesting option for fire-related mon-
itoring (e.g. ECV, EBV).

All in all, for the purposes of systematically selecting the best
spectral indices to derive indicators of wildfire disturbances, extracted
from satellite images time series, and for complementing the informa-
tion already available in fire databases, the framework here presented is
generic enough to be applicable to other study areas. This is because the
signal patterns that allow for the detection of such disturbances within
satellite images time series, as well as the spectral responses of vege-
tation to wildfire disturbance, tend to be similar across different
biomes, vegetation types, and climatic regimes (e.g. Hope et al., 2012;
Lanorte et al., 2014; Leon et al., 2012).

4. Conclusions

Despite the vast amount of remote-sensing studies that assess
wildfires, there is still a need for protocols to systematically select the
best indicators at the local or regional scale to develop algorithms that
detect, map and assess such disturbances, and to complement the in-
formation on existing databases. For tackling this, in this study, we
analyzed and compared several indices, derived from time series of
MODIS images, for the assessment and monitoring of wildfire dis-
turbances. Moreover, this work contributed to improve the selection of
the best indicators, derived from remotely sensed indices, with poten-
tial to improve existing information in national fire databases, for
ecological and environmental applications, at a regional scale. This was
accomplished by proposing a multi-indicator consensus approach
which allowed to profit from spectral indices capturing different aspects
of the Earth's surface, and derived from distinct regions of the elec-
tromagnetic spectrum. Finally, although satellite data with coarse
spatial resolution was used here, the same principles (and a similar
framework) could be used employing satellite time series data from
recent or upcoming platforms with higher spatial resolution, but still
high temporal frequency (e.g. Sentinel-2 or PRISMA sensors).

Fig. 4. Density distributions of dates from all the five datasets
compared (i.e. reference – National fire DB, MCD45 and MCD64,
and date estimates from the ‘Median’ and ‘Best’ indicators). For
comparability purposes, only the dates available for the same
polygons as the ones with date information on the national fire
database were plotted.
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